
Simulink® Coverage™
Reference

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Coverage™ Reference
© COPYRIGHT 2017–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
September 2017 Online only New for Version 4.0 (Release 2017b)
March 2018 Online only Revised for Version 4.1 (Release 2018a)
September 2018 Online only Revised for Version 4.2 (Release 2018b)
March 2019 Online only Revised for Version 4.3 (Release R2019a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Functions — Alphabetical List
1

Simulink Coverage Settings
2

Coverage Pane . 2-2
Coverage Pane Overview . 2-3
Enable coverage analysis . 2-3
Scope of coverage analysis . 2-4
Select Models . 2-5
Select Subsystem . 2-5
Record coverage for MATLAB files . 2-7
Record coverage for C/C++ S-functions 2-7
Structural coverage level . 2-8
Lookup table . 2-9
Signal range . 2-10
Signal size . 2-10
Objectives and constraints . 2-11
Saturation on integer overflow . 2-12
Relational boundary . 2-12
Relational boundary coverage absolute tolerance 2-13
Relational boundary coverage relative tolerance 2-13
Restrict coverage recording interval 2-14
Coverage interval start time . 2-15
Coverage interval stop time . 2-15
Force block reduction off . 2-16
Treat Simulink logic blocks as short-circuited 2-16
MCDC mode . 2-17
Warn when unsupported blocks exist in model 2-18
Coverage filter filename . 2-18
Coverage metric settings . 2-19

iii

Contents

Record coverage for this model . 2-20
Record coverage for referenced models 2-21
Include top model . 2-22

Coverage Pane: Results . 2-23
Coverage Results Pane Overview . 2-24
Show Results Explorer . 2-24
Display coverage results using model coloring 2-25
Generate report automatically after analysis 2-26
Save last run in workspace variable 2-27
Last coverage run variable name . 2-27
Increment variable name with each simulation 2-28
Autosave data file name . 2-29
Output directory . 2-29
Coverage report options . 2-30
Additional data to include in coverage report 2-32
Update coverage results on pause . 2-32
Save output data . 2-33
Enable cumulative data collection . 2-33
Include cumulative data in coverage report 2-34
Save cumulative coverage results in workspace variable 2-35
Cumulative coverage variable name 2-36

Class Reference
3

iv Contents

Functions — Alphabetical List

1

allNames
Class: cv.cvdatagroup
Package: cv

Get names of all models associated with cvdata objects in cv.cvdatagroup

Syntax
models = allNames(cvdg)
models = allNames(cvdg, simMode)

Description
Get names of all models associated with cvdata objects in cv.cvdatagroup.

models = allNames(cvdg) returns a cell array of character vectors or strings
identifying all model names associated with the cvdata objects in cvdg, an instantiation
of the cv.cvdatagroup class.

models = allNames(cvdg, simMode) returns a cell array of character vectors or
strings identifying all model names having the simulation mode simMode associated with
the cvdata objects in cvdg, an instantiation of the cv.cvdatagroup class.

Input Arguments
cvdg — Class instance
object

Instance of class cv.cvdatagroup.

simMode — Simulation mode
character vector or string

Simulation mode associated with the cvdata objects in cvdg. Valid values include the
following:

1 Functions — Alphabetical List

1-2

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefSIL' (or
'ModelRefPIL')

Model reference in Software-in-the-Loop (SIL) or
Processor-in-the-Loop (PIL) simulation mode.

'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with
code interface set to top model.

Output Arguments
models — Model names
cell array of character vectors or strings

All model names associated with the cvdata objects in cvdg.

Examples
Add three cvdata objects to cvdg and return a cell array of model names:

a = cvdata;
b = cvdata;
c = cvdata;
cvdg = cv.cvdatagroup;
add (cvdg, a, b, c);
model_names = allNames(cvdg);
model_names_sim_mode = allnames(cvdg, 'ModelRefSIL')

 allNames

1-3

complexityinfo
Retrieve cyclomatic complexity coverage information from cvdata object

Syntax
complexity = complexityinfo(cvdo, object)
complexity = complexityinfo(cvdo, object, mode)

Description
complexity = complexityinfo(cvdo, object) returns complexity coverage
results from the cvdata object cvdo for the model component object.

complexity = complexityinfo(cvdo, object, mode) returns complexity
coverage results from the cvdata object cvdo for the model component object for the
simulation mode mode.

Input Arguments
cvdo

cvdata object

object

The object argument specifies an object in the model or Stateflow® chart that received
decision coverage. Valid values for object include the following:

Object Specification Description
BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink® API object

1 Functions — Alphabetical List

1-4

Object Specification Description
sfID Stateflow ID
sfObj Handle to a Stateflow API object from a singly

instantiated Stateflow chart
{BlockPath, sfID} Cell array with the path to a Stateflow chart or

atomic subchart and the ID of an object
contained in that chart or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or
subchart and a Stateflow object API handle
contained in that chart or subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or
atomic subchart and the ID of an object
contained in that chart or subchart

When specifying an S-function block, valid values for object include the following:

Object Specification Description
{BlockPath, fName} Cell array with the path to an S-Function block

and the name of a source file.
{BlockHandle, fName} Cell array with an S-Function block handle and

the name of a source file.
{BlockPath, fName, funName} Cell array with the path to an S-Function block,

the name of a source file, and a function name.
{BlockHandle, fName, funName} Cell array with an S-Function block handle, the

name of a source file an a function name.

For coverage data collected during Software-in-the-Loop (SIL) mode or Processor-in-the-
Loop (PIL) simulation mode, valid values for object include the following:

Object Specification Description
{fileName, funName} Cell array with the name of a source file and a

function name.
{Model, fileName} Cell array with a model name (or model handle)

and the name of a source file.
{Model, fileName, funName} Cell array with a model name (or model handle),

the name of a source file, and a function name.

 complexityinfo

1-5

mode

The mode argument specifies the simulation mode for coverage. Valid values for mode
include the following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefSIL' (or
'ModelRefPIL')

Model reference in Software-in-the-Loop (SIL) or
Processor-in-the-Loop (PIL) simulation mode.

'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with
code interface set to top model.

Output Arguments
complexity

If cvdo does not contain cyclomatic complexity coverage results for object,
complexity is empty.

If cvdo contains cyclomatic complexity coverage results for object, complexity is a
two-element vector of the form [total_complexity local_complexity]:

total_complexity Cyclomatic complexity coverage for object and its
descendants (if any)

local_complexity Cyclomatic complexity coverage for object

If object has variable-size signals, complexity also contains the variable complexity.

Examples
Open the sldemo_fuelsys model and create the test specification object testObj.
Enable decision, condition, and MCDC coverage for sldemo_fuelsys and execute
testObj using cvsim. Use complexityinfo to retrieve cyclomatic complexity results

1 Functions — Alphabetical List

1-6

for the Throttle subsystem. The Throttle subsystem itself does not record cyclomatic
complexity coverage results, but the contents of the subsystem do record cyclomatic
complexity coverage.

mdl = 'sldemo_fuelsys';
open_system(mdl);
testObj = cvtest(mdl)
testObj.settings.decision = 1;
testObj.settings.condition = 1;
testObj.settings.mcdc = 1;
data = cvsim(testObj);
blk_handle = get_param([mdl, ...
 '/Engine Gas Dynamics/Throttle & Manifold/Throttle'],...
 'Handle');
coverage = complexityinfo(data, blk_handle);
coverage

Alternatives
Use the coverage settings to collect and display cyclomatic complexity coverage results in
the coverage report:

1 Open the model.
2 In the Model Editor, select Analysis > Coverage > Settings.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable

coverage analysis.
4 Under Coverage metrics, select MCDC as the structural coverage level.
5 Click OK to close the Configuration Parameters dialog box and save your changes.
6 Simulate the model and review the results in the HTML report.

See Also
conditioninfo | cvsim | decisioninfo | getCoverageInfo | mcdcinfo |
sigrangeinfo | sigsizeinfo | tableinfo

Topics
“Cyclomatic Complexity”

 complexityinfo

1-7

Introduced in R2011a

1 Functions — Alphabetical List

1-8

conditioninfo
Retrieve condition coverage information from cvdata object

Syntax
coverage = conditioninfo(cvdo, object)
coverage = conditioninfo(cvdo, object, mode)
coverage = conditioninfo(cvdo, object, ignore_descendants)
[coverage, description] = conditioninfo(cvdo, object)

Description
coverage = conditioninfo(cvdo, object) returns condition coverage results from
the cvdata object cvdo for the model component specified by object.

coverage = conditioninfo(cvdo, object, mode) returns condition coverage
results from the cvdata object cvdo for the model component specified by object for
the simulation mode mode.

coverage = conditioninfo(cvdo, object, ignore_descendants) returns
condition coverage results for object, depending on the value of
ignore_descendants.

[coverage, description] = conditioninfo(cvdo, object) returns condition
coverage results and textual descriptions of each condition in object.

Input Arguments
cvdo

cvdata object

 conditioninfo

1-9

object

An object in the Simulink model or Stateflow diagram that receives decision coverage.
Valid values for object are as follows:

BlockPath Full path to a Simulink model or block
BlockHandle Handle to a Simulink model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a Stateflow chart

or atomic subchart and the ID of an object
contained in that chart or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart
or atomic subchart and a Stateflow object
API handle contained in that chart or
subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow
chart or atomic subchart and the ID of an
object contained in that chart or subchart

When specifying an S-function block, valid values for object include the following:

Object Specification Description
{BlockPath, fName} Cell array with the path to an S-Function block

and the name of a source file.
{BlockHandle, fName} Cell array with an S-Function block handle and

the name of a source file.
{BlockPath, fName, funName} Cell array with the path to an S-Function block,

the name of a source file, and a function name.
{BlockHandle, fName, funName} Cell array with an S-Function block handle, the

name of a source file an a function name.

For coverage data collected during Software-in-the-Loop (SIL) mode or Processor-in-the-
Loop (PIL) simulation mode, valid values for object include the following:

1 Functions — Alphabetical List

1-10

Object Specification Description
{fileName, funName} Cell array with the name of a source file and a

function name.
{Model, fileName} Cell array with a model name (or model handle)

and the name of a source file.
{Model, fileName, funName} Cell array with a model name (or model handle),

the name of a source file, and a function name.

mode

The mode argument specifies the simulation mode for coverage. Valid values for mode
include the following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefSIL' (or
'ModelRefPIL')

Model reference in Software-in-the-Loop (SIL) or
Processor-in-the-Loop (PIL) simulation mode.

'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with
code interface set to top model.

ignore_descendants

Logical value that specifies whether to ignore the coverage of descendant objects
1 to ignore coverage of descendant objects
0 (default) to collect coverage of descendant objects

Output Arguments
coverage

The value of coverage is a two-element vector of form [covered_outcomes
total_outcomes]. coverage is empty if cvdo does not contain condition coverage
results for object. The two elements are:

 conditioninfo

1-11

covered_outcomes Number of condition outcomes satisfied for
object

total_outcomes Total number of condition outcomes for
object

description

A structure array with the following fields:

condition A structure array containing condition info
for individual condition outcomes

isFiltered Whether the block is filtered
filterRationale The filtering rationale
justifiedCoverage The justified coverage conditions
isJustified Whether the block is justified

Examples
The following example opens the slvnvdemo_cv_small_controller example model,
creates the test specification object testObj, enables condition coverage for testObj,
and executes testObj. Then retrieve the condition coverage results for the Logic block
(in the Gain subsystem) and determine its percentage of condition outcomes covered:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
testObj.settings.condition = 1;
data = cvsim(testObj)
blk_handle = get_param([mdl, '/Gain/Logic'], 'Handle');
cov = conditioninfo(data, blk_handle)
percent_cov = 100 * cov(1) / cov(2)

Alternatives
Use the coverage settings to collect condition coverage for a model:

1 Open the model for which you want to collect condition coverage.

1 Functions — Alphabetical List

1-12

2 In the Model Editor, select Analysis > Coverage > Settings.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable

coverage analysis.
4 Under Coverage metrics, select Condition as the structural coverage level.
5 On the Coverage > Results pane, specify the output you need.
6 Click OK to close the Configuration Parameters dialog box and save your changes.
7 Simulate the model and review the results.

See Also
complexityinfo | cvsim | decisioninfo | getCoverageInfo | mcdcinfo |
overflowsaturationinfo | sigrangeinfo | sigsizeinfo | tableinfo

Topics
“Condition Coverage (CC)”

Introduced in R2006b

 conditioninfo

1-13

cv.cvdatagroup class
Package: cv

Collection of cvdata objects

Description
Instances of this class contain a collection of cvdata objects. Each cvdata object
contains coverage results for a particular model in the model hierarchy.

Construction

cv.cvdatagroup Create collection of cvdata objects for model reference hierarchy

Methods

allNames Get names of all models associated with cvdata objects in
cv.cvdatagroup

allSimulationModes Get names of all simulation modes associated with cvdata objects
in cv.cvdatagroup

get Get cvdata object
getAll Get all cvdata objects

Properties

name cv.cvdatagroup object name

1 Functions — Alphabetical List

1-14

Copy Semantics
Handle. To learn how this affects your use of the class, see Copying Objects (MATLAB) in
the MATLAB® Programming Fundamentals documentation.

 cv.cvdatagroup class

1-15

cv.cvdatagroup
Class: cv.cvdatagroup
Package: cv

Create collection of cvdata objects for model reference hierarchy

Syntax
cvdg = cv.cvdatagroup(cvdo1, cvdo2,...)

Description
cvdg = cv.cvdatagroup(cvdo1, cvdo2,...) creates an instantiation of the
cv.cvdatagroup class (cvdg) that contains the cvdata objects cvdo1, cvdo2, etc. A
cvdata object contains results of the simulation runs.

Examples
Create an instantiation of the cv.cvdatagroup class and add two cvdata objects to it:

a = cvdata;
b = cvdata;
cvdg = cv.cvdatagroup(a, b);

1 Functions — Alphabetical List

1-16

allSimulationModes
Class: cv.cvdatagroup
Package: cv

Get names of all simulation modes associated with cvdata objects in cv.cvdatagroup

Syntax
simModes= allSimulationModes(cvdg)
simModes= allSimulationModes(cvdg, modelName)

Description
Get names of all simulation modes associated with cvdata objects in cv.cvdatagroup.

simModes= allSimulationModes(cvdg) returns a cell array of character vectors or
strings identifying all simulation modes associated with the cvdata objects in cvdg, an
instantiation of the cv.cvdatagroup class.

simModes= allSimulationModes(cvdg, modelName) returns a cell array of
character vectors or strings identifying all simulation modes associated with the model
modelNamein cvdg, an instantiation of the cv.cvdatagroup class.

Input Arguments
cvdg — Class instance
object

Instance of class cv.cvdatagroup.

modelName — Name of the model
character vector or string

Model with which simulation modes are associated.

 allSimulationModes

1-17

Output Arguments
simModes — Simulation modes
cell array of character vectors or strings

All simulation modes associated with cvdg. Valid values include the following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefSIL' (or
'ModelRefPIL')

Model reference in Software-in-the-Loop (SIL) or
Processor-in-the-Loop (PIL) simulation mode.

'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with
code interface set to top model.

Examples

Get the Simulation Modes Associated with Three cvdata Sets
Add three cvdata objects to cvdg and return a cell array of model names:

a = cvdata;
b = cvdata;
c = cvdata;
cvdg = cv.cvdatagroup;
add (cvdg, a, b, c);
model_simModes = allSimulationModes(cvdg)

1 Functions — Alphabetical List

1-18

cvexit
Exit model coverage environment

Syntax
cvexit

Description
cvexit exits the model coverage environment. Issuing this command closes the
Coverage Display window and removes coloring from a block diagram that displays its
model coverage results.

Introduced in R2006b

 cvexit

1-19

cvhtml
Produce HTML report from model coverage objects

Syntax
cvhtml(file, cvdo)
cvhtml(file, cvdo1, cvdo2, ...)
cvhtml(file, cvdo1, cvdo2, ..., options)
cvhtml(file, cvdo, simMode)

Description
cvhtml(file, cvdo) creates an HTML report of the coverage results in the cvdata or
cv.cvdatagroup object cvdo when you run model coverage in simulation. cvhtml
saves the coverage results in file. The model must be open when you use cvhtml to
generate its coverage report.

cvhtml(file, cvdo1, cvdo2, ...) creates a combined report of several cvdata
objects. The results from each object appear in a separate column of the HTML report.
Each cvdata object must correspond to the same root model or subsystem. Otherwise,
the function fails.

cvhtml(file, cvdo1, cvdo2, ..., options) creates a combined report of several
cvdata objects using the report options specified by options.

cvhtml(file, cvdo, simMode) creates an HTML report for the models having the
simulation mode simMode.

Input Arguments
cvdo — Class instance
object

cv.cvdatagroup object.

1 Functions — Alphabetical List

1-20

file — HTML file
character vector or string

The HTML file in the MATLAB current folder where cvhtml stores the results. You can
also specify the absolute path or relative path and the HTML file where cvhtml stores
the results.

options — Report options
character vector or string

Specify the report options that you specify in options:

• To enable an option, set it to 1 (e.g., '-hTR=1').
• To disable an option, set it to 0 (e.g., '-bRG=0').
• To specify multiple report options, list individual options in a single options

character vector or string separated by commas or spaces (e.g., '-hTR=1 -bRG=0 -
scm=0').

Option Description Default
-sRT Show report on
-sVT Web view mode off
-aTS Include each test in the model summary on
-bRG Produce bar graphs in the model summary on
-bTC Use two color bar graphs (red, blue) on
-hTR Display hit/count ratio in the model summary off
-xEM Exclude execution metric details from report off
-nFC Exclude fully covered model objects from report off
-nFD Exclude fully covered model object details from

report
on

-scm Include cyclomatic complexity numbers in summary on
-bcm Include cyclomatic complexity numbers in block

details
on

-xEv Filter Stateflow events from report off

simMode — Simulation mode
character vector or string

 cvhtml

1-21

Simulation mode associated with the models. Valid values include the following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefSIL' (or
'ModelRefPIL')

Model reference in Software-in-the-Loop (SIL) or
Processor-in-the-Loop (PIL) simulation mode.

'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with
code interface set to top model.

Examples
Make sure you have write access to the default MATLAB folder. Create a cumulative
coverage report for the slvnvdemo_cv_small_controller mode and save it as
ratelim_coverage.html:

model = 'slvnvdemo_cv_small_controller';
open_system(model);
cvt = cvtest(model);
cvd = cvsim(cvt);
outfile = 'ratelim_coverage.html';
cvhtml(outfile, cvd);

Alternatives
Use the coverage settings to create a model coverage report in an HTML file:

1 Open the model for which you want a model coverage report.
2 In the Simulink Editor, select Analysis > Coverage > Settings.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable

coverage analysis.
4 On the Coverage > Results pane, select Generate report automatically after

analysis.
5 Click OK to close the Configuration Parameters dialog box and save your changes.

1 Functions — Alphabetical List

1-22

6 Simulate the model and review the generated report.

See Also
cv.cvdatagroup | cvmodelview | cvsim

Topics
“Create HTML Reports with cvhtml”

Introduced before R2006a

 cvhtml

1-23

cvload
Load coverage tests and stored results into memory

Syntax
[tests, data] = cvload(filename)
[tests, data] = cvload(filename, restoretotal)

Description
[tests, data] = cvload(filename) loads the tests and data stored in the text file
filename.cvt. tests is a cell array of cvtest objects that are loaded. data is a cell
array of cvdata objects that are loaded. data has the same size as tests, but if a
particular test has no results, data can contain empty elements.

[tests, data] = cvload(filename, restoretotal) restores or clears the
cumulative results from prior runs, depending on the value of restoretotal. If
restoretotal is 1, cvload restores the cumulative results from prior runs. If
restoretotal is unspecified or 0, cvload clears the model's cumulative results.

The following are special considerations for using the cvload command:

• If a model with the same name exists in the coverage database, the software loads
only the compatible results that reference the existing model to prevent duplication.

• If the Simulink models referenced from the file are open but do not exist in the
coverage database, the coverage tool resolves the links to the existing models.

• When you are loading several files that reference the same model, the software loads
only the results that are consistent with the earlier files.

Examples
Store coverage results in cvtest and cvdata objects:

[test_objects, data_objects] = cvload(test_results, 1);

1 Functions — Alphabetical List

1-24

See Also
cvsave

Topics
“Load Stored Coverage Test Results with cvload”

Introduced before R2006a

 cvload

1-25

cvmodelview
Display model coverage results with model coloring

Syntax
cvmodelview(cvdo)
cvmodelview(cvdo, simMode)

Description
cvmodelview(cvdo) displays coverage results from the cvdata object cvdo by coloring
the objects in the model that have model coverage results.

cvmodelview(cvdo, simMode) displays coverage results from the cvdata object cvdo
by coloring the objects in the model that have model coverage results for the specified
simulation mode.

Input Arguments
cvdo — Class instance
object

cv.cvdatagroup object.

simMode — Simulation mode
character vector or string

Simulation modes associated with the models. Valid values include the following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.

1 Functions — Alphabetical List

1-26

Object Specification Description
'ModelRefSIL' (or
'ModelRefPIL')

Model reference in Software-in-the-Loop (SIL) or
Processor-in-the-Loop (PIL) simulation mode.

'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with
code interface set to top model.

Examples
Open the slvnvdemo_cv_small_controller example model, create the test
specification object testObj, and execute testObj to collect model coverage. Run
cvmodelview to color the model objects for which you collect model coverage
information:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
data = cvsim(testObj)
cvmodelview(data)

Alternatives
Use the coverage settings to display model coverage results by coloring objects:

1 Open the model.
2 Select Analysis > Coverage > Settings.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable

coverage analysis.
4 On the Coverage > Results pane, select Display coverage results using model

coloring.
5 Click OK to close the Configuration Parameters dialog box and save your changes.
6 Simulate the model and review the results.

See Also
cvhtml | cvsim

 cvmodelview

1-27

Topics
“View Coverage Results in a Model”

Introduced in R2006b

1 Functions — Alphabetical List

1-28

cvresults
Returns active coverage data, clears and loads active coverage data from a file

Syntax
[CVDATA, CVCUMDATA] = cvresults(MODELNAME)
[cvresults(MODELNAME, 'clear')
cvresults(MODELNAME, 'load', filename)

Description
[CVDATA, CVCUMDATA] = cvresults(MODELNAME) returns the active single-run
coverage data CVDATA and cumulative coverage data CVCUMDATA.

[cvresults(MODELNAME, 'clear') clears the active coverage data.

cvresults(MODELNAME, 'load', filename) loads the active coverage data from
a .cvt file.

See Also
Introduced in R2016a

 cvresults

1-29

cvsave
Save coverage tests and results to file

Syntax
cvsave(filename, model)
cvsave(filename, cvd)
cvsave(filename, cvto1, cvto2, ...)
cvsave(filename, cell_array{ :})

Description
cvsave(filename, model) saves all the tests (cvtest objects) and results (cvdata
objects) related to model in the text file filename.cvt. model is a handle to or name of
a Simulink model.

cvsave(filename, cvd) saves all the results (cvdata objects) for the active model in
the text file filename.cvt. cvsave also saves information about any referenced models.

cvsave(filename, cvto1, cvto2, ...) saves multiple cvtest objects in the text
file filename.cvt. cvsave also saves information about any referenced models.

cvsave(filename, cell_array{ :}) saves the test results stored in each element of
cell_array to the file filename.cvt. Each element in cell_array contains test
results for a cvdata object.

Input Arguments
filename

Character vector or string containing the name of the file in which to save the data.
cvsave appends the extension .cvt to the name of the file when saving it.

1 Functions — Alphabetical List

1-30

model

Handle to a Simulink model

cvd

cvdata object

cvto

cvtest object

cell_array

Cell array of cvtest objects

Examples
Save coverage results for the slvnvdemo_cv_small_controller model in
ratelim_testdata.cvt:

model = 'slvnvdemo_cv_small_controller';
open_system(model);
cvt = cvtest(model);
cvd = cvsim(cvt);
cvsave('ratelim_testdata', model);

Save cumulative coverage results for the Adjustable Rate Limiter subsystem in the
slvnvdemo_ratelim_harness model from two simulations:

% Open model and subsystem
mdl = 'slvnvdemo_ratelim_harness';
mdl_subsys = ...
 'slvnvdemo_ratelim_harness/Adjustable Rate Limiter';
open_system(mdl);
open_system(mdl_subsys);

% Create data files
t_gain = (0:0.02:2.0)';
u_gain = sin(2*pi*t_gain);
t_pos = [0;2];
u_pos = [1;1];

 cvsave

1-31

t_neg = [0;2];
u_neg = [-1;-1];
save('within_lim.mat','t_gain','u_gain','t_pos','u_pos', ...
 't_neg', 'u_neg');

t_gain = [0;2];
u_gain = [0;4];
t_pos = [0;1;1;2];
u_pos = [1;1;5;5]*0.02;
t_neg = [0;2];
u_neg = [0;0];
save('rising_gain.mat','t_gain','u_gain','t_pos','u_pos', ...
 't_neg', 'u_neg');

% Specify coverage options in cvtest object
testObj1 = cvtest(mdl_subsys);
testObj1.label = 'Gain within slew limits';
testObj1.setupCmd = 'load(''within_lim.mat'');';
testObj1.settings.mcdc = 1;
testObj1.settings.condition = 1;
testObj1.settings.decision = 1;

testObj2 = cvtest(mdl_subsys);
testObj2.label = ...
 'Rising gain that temporarily exceeds slew limit';
testObj2.setupCmd = 'load(''rising_gain.mat'');';
testObj2.settings.mcdc = 1;
testObj2.settings.condition = 1;
testObj2.settings.decision = 1;

% Simulate the model with both cvtest objects
[dataObj1,simOut1] = cvsim(testObj1);
[dataObj2,simOut2] = cvsim(testObj2,[0 2]);

cumulative = dataObj1+dataObj2;
cvsave('ratelim_testdata',cumulative);

As in the preceding example, save cumulative coverage results for the Adjustable Rate
Limiter subsystem in the slvnvdemo_ratelim_harness model from two simulations.
Save the results in a cell array and then save the data to a file:

% Open model and subsystem
mdl = 'slvnvdemo_ratelim_harness';
mdl_subsys = ...

1 Functions — Alphabetical List

1-32

 'slvnvdemo_ratelim_harness/Adjustable Rate Limiter';
open_system(mdl);
open_system(mdl_subsys);

% Create data files
t_gain = (0:0.02:2.0)';
u_gain = sin(2*pi*t_gain);
t_pos = [0;2];
u_pos = [1;1];
t_neg = [0;2];
u_neg = [-1;-1];
save('within_lim.mat','t_gain','u_gain','t_pos','u_pos', ...
 't_neg', 'u_neg');

t_gain = [0;2];
u_gain = [0;4];
t_pos = [0;1;1;2];
u_pos = [1;1;5;5]*0.02;
t_neg = [0;2];
u_neg = [0;0];
save('rising_gain.mat','t_gain','u_gain','t_pos','u_pos', ...
 't_neg', 'u_neg');

% Specify coverage options in cvtest object
testObj1 = cvtest(mdl_subsys);
testObj1.label = 'Gain within slew limits';
testObj1.setupCmd = 'load(''within_lim.mat'');';
testObj1.settings.mcdc = 1;
testObj1.settings.condition = 1;
testObj1.settings.decision = 1;

testObj2 = cvtest(mdl_subsys);
testObj2.label = ...
 'Rising gain that temporarily exceeds slew limit';
testObj2.setupCmd = 'load(''rising_gain.mat'');';
testObj2.settings.mcdc = 1;
testObj2.settings.condition = 1;
testObj2.settings.decision = 1;

% Simulate the model with both cvtest objects
[dataObj1,simOut1] = cvsim(testObj1);
[dataObj2,simOut2] = cvsim(testObj2,[0 2]);

% Save the results in the cell array

 cvsave

1-33

cov_results{1} = dataObj1;
cov_results{2} = dataObj2;

% Save the results to a file
cvsave('ratelim_testdata', cov_results{ :});

Alternatives
Use the coverage settings to save cumulative coverage results for a model:

1 Open the model for which you want to save cumulative coverage results.
2 In the Model Editor, select Analysis > Coverage > Settings.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable

coverage analysis.
4 On the Coverage > Results pane, select Save last run in workspace variable.
5 Click OK to close the Configuration Parameters dialog box and save your changes.
6 Simulate the model and review the results.

See Also
cvload

Topics
“Save Test Runs to File with cvsave”

Introduced before R2006a

1 Functions — Alphabetical List

1-34

cvsim
Simulate and return model coverage results for test objects

Syntax
cvdo = cvsim(modelName)
cvdo = cvsim(cvto)
[cvdo,simOut] = cvsim(cvto,Name1,Value1,Name2,Value2,...)
[cvdo,simOut] = cvsim(cvto,ParameterStruct)
[cvdo1,cvdo2,...] = cvsim(cvto1,cvto2,...)

Description
cvdo = cvsim(modelName) simulates the model and returns the coverage results for
the model. cvsim saves the coverage results in the cvdata object, cvdo. However, when
recording coverage for multiple models in a hierarchy, cvsim returns the coverage
results in a cv.cvdatagroup object.

cvdo = cvsim(cvto) simulates the model and returns the coverage results for the
cvtest object, cvto. cvsim saves the coverage results in the cvdata object, cvdo.
However, when recording coverage for multiple models in a hierarchy, cvsim returns the
coverage results in a cv.cvdatagroup object.

[cvdo,simOut] = cvsim(cvto,Name1,Value1,Name2,Value2,...) specifies the
model parameters and simulates the model. cvsim returns the coverage results in the
cvdata object, cvdo, and returns the simulation outputs in the
Simulink.SimulationOutput object, simOut.

[cvdo,simOut] = cvsim(cvto,ParameterStruct) sets the model parameters
specified in a structure ParameterStruct, simulates the model, returns the coverage
results in cvdo, and returns the simulation outputs in simOut.

[cvdo1,cvdo2,...] = cvsim(cvto1,cvto2,...) simulates the model and returns
the coverage results for the test objects, cvto1, cvto2, cvdo1 contains the
coverage results for cvto1, cvdo2 contains the coverage results for cvto2, and so on.

 cvsim

1-35

Note Even if you have not enabled coverage recording for the model, you can execute
the cvsim command to record coverage for your model.

Input Arguments
modelName

Name of model specified as a character vector or string

cvto

cvtest object that specifies coverage options for the simulation

ParameterStruct

Model parameters specified as a structure

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

ParameterName

Name of the model parameter to be specified for simulation

ParameterValue

Value of the model parameter

Note For a complete list of model parameters, see “Model Parameters” (Simulink).

Output Arguments
cvdo

cvdata object

1 Functions — Alphabetical List

1-36

simOut

A Simulink.SimulationOutput object that contains the simulation outputs.

Examples
Open the sldemo_engine example model, create the test object, set the model
parameters, and simulate the model. cvsim returns the coverage data in cvdo and the
simulation outputs in the Simulink.SimulationOutput object, simOut:
model = 'sldemo_engine';
open_system(model);
testObj = cvtest(model); % Get test data
testObj.settings.decision = 1;
paramStruct.AbsTol = '1e-5';
paramStruct.SaveState = 'on';
paramStruct.StateSaveName = 'xoutNew';
paramStruct.SaveOutput = 'on';
paramStruct.OutputSaveName = 'youtNew';
[cvdo,simOut] = cvsim(testObj,paramStruct); % Get coverage
cvhtml('CoverageReport.html', cvdo); % Create HTML Report

See Also
cv.cvdatagroup | cvtest | sim

Introduced before R2006a

 cvsim

1-37

cvtest
Create model coverage test specification object

Syntax
cvto = cvtest(root)
cvto = cvtest(root, label)
cvto = cvtest(root, label, setupcmd)

Description
cvto = cvtest(root) creates a test specification object with the handle cvto.
Simulate cvto with the cvsim command.

cvto = cvtest(root, label) creates a test object with the label label, which is
used for reporting results.

cvto = cvtest(root, label, setupcmd) creates a test object with the setup
command setupcmd.

Input Arguments
root

Name or handle for a Simulink model or a subsystem. Only the specified model or
subsystem and its descendants are subject to model coverage testing.

label

Label for test object

1 Functions — Alphabetical List

1-38

setupcmd

Setup command for creating test object. The setup command is executed in the base
MATLAB workspace just prior to running the simulation. This command is useful for
loading data prior to a test.

Output Arguments
cvto

A test specification object with the following structure.

Field Description
id Read-only internal ID
modelcov Read-only internal ID
rootPath Name of system or subsystem for analysis
label String used when reporting results
setupCmd Command executed in base workspace prior to

simulation
settings.condition Set to 1 for condition coverage.
settings.decision Set to 1 for decision coverage.
settings.
designverifier

Set to 1 for coverage for Simulink Design Verifier™
blocks.

settings.mcdc Set to 1 for MCDC coverage.
settings.overflowsaturatio
n

Set to 1 for saturate on integer overflow coverage.

settings.relationalop Set to 1 for relational boundary coverage. Use
options.
covBoundaryAbsTol and options.
covBoundaryRelTol for specifying tolerances for
this coverage.

For more information, see “Relational Boundary
Coverage”.

settings.sigrange Set to 1 for signal range coverage.

 cvtest

1-39

Field Description
settings.sigsize Set to 1 for signal size coverage.
settings.tableExec Set to 1 for lookup table coverage.
modelRefSettings.
enable

• 'off' — Disables coverage for all referenced
models.

• 'all' or on — Enables coverage for all
referenced models.

• 'filtered' — Enables coverage only for
referenced models not listed in the
excludedModels subfield.

modelRefSettings.
excludeTopModel

Set to 1 to exclude coverage for the top model

modelRefSettings.
excludedModels

Character vector or string specifying a comma-
separated list of referenced models for which
coverage is disabled.

emlSettings.
enableExternal

Set to 1 to enable coverage for external program files
called by MATLAB functions in your model.

sfcnSettings.
enableSfcn

Set to 1 to enable coverage for C/C++ S-Function
blocks in your model.

options.
forceBlockReduction

Set to 1 to override the Simulink Block reduction
parameter if it is enabled.

options.
covBoundaryRelTol

Set to the value of relative tolerance for relational
boundary coverage.

For more information, see “Relational Boundary
Coverage”.

options.
covBoundaryAbsTol

Set to the value of absolute tolerance for relational
boundary coverage.

For more information, see “Relational Boundary
Coverage”.

1 Functions — Alphabetical List

1-40

Field Description
options.
mcdcmode

• 'Masking' — Use the masking modified condition
and decision coverage (MCDC) definition for
recording MCDC coverage results.

• 'UniqueCause' — Use the unique cause
modified condition and decision coverage (MCDC)
definition for recording MCDC coverage results

For more information, see “Modified Condition and
Decision Coverage (MCDC) Definitions in Simulink
Coverage”.

options.useTimeInterval Set to 1 to restrict model coverage recording only
inside a specified simulation time interval.

For more information see “Specify Coverage
Options”.

options.intervalStartTime Value of the coverage recording interval start time.
options.intervalStopTime Value of the coverage recording interval stop time.
filter.fileName Character vector or string specifying name of

coverage filter file, if you have excluded objects from
coverage recording. See “Coverage Filter Rules and
Files”.

Examples
Create a cvtest object for the Adjustable Rate Limiter block in the
slvnvdemo_ratelim_harness model. Simulate and get coverage data using cvsim.

open_system('slvnvdemo_ratelim_harness');
testObj = cvtest(['slvnvdemo_ratelim_harness', ...
 '/Adjustable Rate Limiter']);
testObj.label = 'Gain within slew limits';
testObj.setupCmd = ...
 'load(''slvnvdemo_ratelim_harness_data.mat'');';
testObj.settings.decision = 1;
testObj.settings.overflowsaturation = 1;
cvdo = cvsim(testObj);

 cvtest

1-41

See Also
cv.cvdatagroup | cvsim

Topics
“Create Tests with cvtest”

Introduced before R2006a

1 Functions — Alphabetical List

1-42

decisioninfo
Retrieve decision coverage information from cvdata object

Syntax
coverage = decisioninfo(cvdo, object)
coverage = decisioninfo(cvdo, object, mode)
coverage = decisioninfo(cvdo, object, ignore_descendants)
[coverage, description] = decisioninfo(cvdo, object)

Description
coverage = decisioninfo(cvdo, object) returns decision coverage results from
the cvdata object cvdo for the model component specified by object.

coverage = decisioninfo(cvdo, object, mode) returns decision coverage
results from the cvdata object cvdo for the model component specified by object for
the simulation mode mode.

coverage = decisioninfo(cvdo, object, ignore_descendants) returns
decision coverage results for object, depending on the value of ignore_descendants.

[coverage, description] = decisioninfo(cvdo, object) returns decision
coverage results and text descriptions of decision points associated with object.

Input Arguments
cvdo

cvdata object

object

The object argument specifies an object in the model or Stateflow chart that received
decision coverage. Valid values for object include the following:

 decisioninfo

1-43

Object Specification Description
BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object from a singly

instantiated Stateflow chart
{BlockPath, sfID} Cell array with the path to a Stateflow chart or

atomic subchart and the ID of an object
contained in that chart or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or
subchart and a Stateflow object API handle
contained in that chart or subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or
atomic subchart and the ID of an object
contained in that chart or subchart

When specifying an S-function block, valid values for object include the following:

Object Specification Description
{BlockPath, fName} Cell array with the path to an S-Function block

and the name of a source file.
{BlockHandle, fName} Cell array with an S-Function block handle and

the name of a source file.
{BlockPath, fName, funName} Cell array with the path to an S-Function block,

the name of a source file, and a function name.
{BlockHandle, fName, funName} Cell array with an S-Function block handle, the

name of a source file an a function name.

For coverage data collected during Software-in-the-Loop (SIL) mode or Processor-in-the-
Loop (PIL) simulation mode, valid values for object include the following:

Object Specification Description
{fileName, funName} Cell array with the name of a source file and a

function name.

1 Functions — Alphabetical List

1-44

Object Specification Description
{Model, fileName} Cell array with a model name (or model handle)

and the name of a source file.
{Model, fileName, funName} Cell array with a model name (or model handle),

the name of a source file, and a function name.

mode

The mode argument specifies the simulation mode for coverage. Valid values for mode
include the following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefSIL' (or
'ModelRefPIL')

Model reference in Software-in-the-Loop (SIL) or
Processor-in-the-Loop (PIL) simulation mode.

'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with
code interface set to top model.

ignore_descendants

Specifies to ignore the coverage of descendant objects if ignore_descendants is set to
1.

Output Arguments
coverage

The value of coverage is a two-element vector of the form [covered_outcomes
total_outcomes].coverage is empty if cvdo does not contain decision coverage
results for object. The two elements are:

covered_outcomes Number of decision outcomes satisfied for
object

 decisioninfo

1-45

total_outcomes Number of decision outcomes for object

description

description is a structure array containing the following fields:

decision Structure array describing individual
decisions, including filtering information.
decision.outcome is a structure array
describing individual decision outcomes,
including filtering information for outcomes

isFiltered Whether the block is filtered
filterRationale The filtering rationale
justifiedCoverage The justified decision conditions
isJustified Whether the block is justified

Examples
Open the slvnvdemo_cv_small_controller model and create the test specification
object testObj. Enable decision coverage for slvnvdemo_cv_small_controller and
execute testObj using cvsim. Use decisioninfo to retrieve the decision coverage
results for the Saturation block and determine the percentage of decision outcomes
covered:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
testObj.settings.decision = 1;
data = cvsim(testObj)
blk_handle = get_param([mdl, '/Saturation'], 'Handle');
cov = decisioninfo(data, blk_handle)
percent_cov = 100 * cov(1) / cov(2)

Alternatives
Use the coverage settings to collect and display decision coverage results:

1 Functions — Alphabetical List

1-46

1 Open the model.
2 In the Model Editor, select Analysis > Coverage > Settings.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable

coverage analysis.
4 Under Coverage metrics, select Decision as the structural coverage level.
5 On the Coverage > Results pane, specify the output you need.
6 Click OK to close the Configuration Parameters dialog box and save your changes.
7 Simulate the model and review the results.

See Also
complexityinfo | conditioninfo | cvsim | getCoverageInfo | mcdcinfo |
overflowsaturationinfo | sigrangeinfo | sigsizeinfo | tableinfo

Topics
“Decision Coverage (DC)”

Introduced in R2006b

 decisioninfo

1-47

executioninfo
Retrieve execution coverage information from cvdata object

Syntax
coverage = executioninfo(cvdo, object)
coverage = executioninfo(cvdo, object, mode)
coverage = executioninfo(cvdo, object, ignore_descendants)
[coverage, description] = executioninfo(cvdo, object)

Description
coverage = executioninfo(cvdo, object) returns execution coverage results
from the cvdata object cvdo for the model component specified by object.

coverage = executioninfo(cvdo, object, mode) returns execution coverage
results from the cvdata object cvdo for the model component specified by object for
the simulation mode mode.

coverage = executioninfo(cvdo, object, ignore_descendants) returns
execution coverage results for object, depending on the value of
ignore_descendants.

[coverage, description] = executioninfo(cvdo, object) returns execution
coverage results and text descriptions of execution points associated with object.

Input Arguments
cvdo

cvdata object

1 Functions — Alphabetical List

1-48

object

The object argument specifies an object in the model or Stateflow chart that received
execution coverage. Valid values for object include the following:

Object Specification Description
BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object from a singly

instantiated Stateflow chart
{BlockPath, sfID} Cell array with the path to a Stateflow chart or

atomic subchart and the ID of an object
contained in that chart or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or
subchart and a Stateflow object API handle
contained in that chart or subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or
atomic subchart and the ID of an object
contained in that chart or subchart

When specifying an S-function block, valid values for object include the following:

Object Specification Description
{BlockPath, fName} Cell array with the path to an S-Function block

and the name of a source file.
{BlockHandle, fName} Cell array with an S-Function block handle and

the name of a source file.
{BlockPath, fName, funName} Cell array with the path to an S-Function block,

the name of a source file, and a function name.
{BlockHandle, fName, funName} Cell array with an S-Function block handle, the

name of a source file an a function name.

For coverage data collected during Software-in-the-Loop (SIL) mode or Processor-in-the-
Loop (PIL) simulation mode, valid values for object include the following:

 executioninfo

1-49

Object Specification Description
{fileName, funName} Cell array with the name of a source file and a

function name.
{Model, fileName} Cell array with a model name (or model handle)

and the name of a source file.
{Model, fileName, funName} Cell array with a model name (or model handle),

the name of a source file, and a function name.

mode

The mode argument specifies the simulation mode for coverage. Valid values for mode
include the following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefSIL' (or
'ModelRefPIL')

Model reference in Software-in-the-Loop (SIL) or
Processor-in-the-Loop (PIL) simulation mode.

'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with
code interface set to top model.

ignore_descendants

Specifies to ignore the coverage of descendant objects if ignore_descendants is set to
1.

Output Arguments
coverage

The value of coverage is a two-element vector of the form [covered_outcomes
total_outcomes].coverage is empty if cvdo does not contain execution coverage
results for object. The two elements are:

1 Functions — Alphabetical List

1-50

covered_outcomes Number of execution outcomes satisfied for
object

total_outcomes Number of execution outcomes for object

description

description is a structure array containing the following fields:

decision.text Structure array describing block execution
counts

isFiltered Whether the block is filtered
filterRationale The filtering rationale
justifiedCoverage The justified decision conditions
isJustified Whether the block is justified

Examples
Open the slvnvdemo_cv_small_controller model and create the test specification
object testObj. Enable execution coverage for slvnvdemo_cv_small_controller
and execute testObj using cvsim. Use executioninfo to retrieve the execution
coverage results for the Saturation block and determine the percentage of execution
outcomes covered:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
data = cvsim(testObj)
blk_handle = get_param([mdl, '/Saturation'], 'Handle');
cov = executioninfo(data, blk_handle)
percent_cov = 100 * cov(1) / cov(2)

Alternatives
Use the coverage settings to collect and display execution coverage results:

1 Open the model.

 executioninfo

1-51

2 In the Model Editor, select Analysis > Coverage > Settings.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable

coverage analysis.
4 Under Coverage metrics, select Block Execution as the structural coverage level.
5 On the Coverage > Results pane, specify the output you need.
6 Click OK to close the Configuration Parameters dialog box and save your changes.
7 Simulate the model and review the results.

See Also
complexityinfo | conditioninfo | cvsim | decisioninfo | getCoverageInfo |
mcdcinfo | overflowsaturationinfo | sigrangeinfo | sigsizeinfo | tableinfo

Topics
“Execution Coverage (EC)”

Introduced in R2006b

1 Functions — Alphabetical List

1-52

get
Class: cv.cvdatagroup
Package: cv

Get cvdata object

Syntax
get(cvdg, model_name)
get(cvdg, model_name, simMode)

Description
Get cvdata object.

get(cvdg, model_name) returns the cvdata object in the cv.cvdatagroup object
cvdg that corresponds to the model specified in model_name.

get(cvdg, model_name, simMode) returns the cvdata object in the
cv.cvdatagroup object cvdg that corresponds to the model specified in model_name
having the simulation mode simMode.

Input Arguments
cvdg — Class instance
object

Instance of class cv.cvdatagroup.

model_name — Name of the model
character vector or string

Model to which the cvdata object in the cv.cvdatagroup object cvdg corresponds.

 get

1-53

simMode — Simulation mode
character vector or string

Simulation mode for the cvdata object in the cv.cvdatagroup object. Valid values
include the following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefSIL' (or
'ModelRefPIL')

Model reference in Software-in-the-Loop (SIL) or
Processor-in-the-Loop (PIL) simulation mode.

'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with
code interface set to top model.

Examples
Get a cvdata object from the specified Simulink model:

get(cvdg, 'slvnvdemo_cv_small_controller');
get(cvdg, 'slvnvdemo_cv_small_controller', 'ModelRefSIL');

1 Functions — Alphabetical List

1-54

getAll
Class: cv.cvdatagroup
Package: cv

Get all cvdata objects

Syntax
getAll(cvdg)
getAll(cvdg, simMode)

Description
Get all cvdata objects.

getAll(cvdg) returns all cvdata objects in the cv.cvdatagroup object cvdg.

getAll(cvdg, simMode) returns all cvdata objects in the cv.cvdatagroup object
cvdg having the simulation mode simMode.

Input Arguments
cvdg — Class instance
object

Instance of class cv.cvdatagroup.

simMode — Simulation mode
character vector or string

Simulation mode associated with the cvdata objects in cvdg. Valid values include the
following:

 getAll

1-55

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefSIL' (or
'ModelRefPIL')

Model reference in Software-in-the-Loop (SIL) or
Processor-in-the-Loop (PIL) simulation mode.

'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with
code interface set to top model.

Examples
Return all cvdata objects from the specified Simulink model:

getAll(cvdg, 'slvnvdemo_cv_small_controller');
getAll(cvdg, 'slvnvdemo_cv_small_controller', 'ModelRefSIL');

1 Functions — Alphabetical List

1-56

getCoverageInfo
Retrieve coverage information for Simulink Design Verifier blocks from cvdata object

Syntax
[coverage, description] = getCoverageInfo(cvdo, object)
[coverage, description] = getCoverageInfo(cvdo, object, metric)
[coverage, description] = getCoverageInfo(cvdo, object, metric,
ignore_descendants)

Description
[coverage, description] = getCoverageInfo(cvdo, object) collects Simulink
Design Verifier coverage for object, based on coverage results in cvdo. object is a
handle to a block, subsystem, or Stateflow chart. getCoverageData returns coverage
data only for Simulink Design Verifier library blocks in object's hierarchy.

[coverage, description] = getCoverageInfo(cvdo, object, metric)
returns coverage data for the block type specified in metric. If object does not match
the block type, getCoverageInfo does not return data.

[coverage, description] = getCoverageInfo(cvdo, object, metric,
ignore_descendants) returns coverage data about object, omitting coverage data for
its descendant objects if ignore_descendants equals 1.

Input Arguments
cvdo

cvdata object

object

In the model or Stateflow chart, object that received Simulink Design Verifier coverage.
The following are valid values for object.

 getCoverageInfo

1-57

BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID from a singly instantiated Stateflow

chart
sfObj Handle to a Stateflow API object from a singly

instantiated Stateflow chart
{BlockPath, sfID} Cell array with the path to a Stateflow chart or

atomic subchart and the ID of an object
contained in that chart or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or
atomic subchart and a Stateflow object API
handle contained in that chart or subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or
atomic subchart and the ID of an object
contained in that chart or subchart

Default:

metric

cvmetric.Sldv enumeration object, or a cell array of enumeration objects, with values
that correspond to Simulink Design Verifier library blocks. If you don't specify a metric,
getCoverageInfo returns coverage information for all available metrics for the
specified object.

test Test Objective block
proof Proof Objective block
condition Test Condition block
assumption Proof Assumption block

ignore_descendants

Boolean value that specifies to ignore the coverage of descendant objects if set to 1.

1 Functions — Alphabetical List

1-58

Output Arguments
coverage

Two-element vector of the form [covered_outcomes total_outcomes].

covered_outcomes Number of test objectives satisfied for
object

total_outcomes Total number of test objectives for object

coverage is empty if cvdo does not contain decision coverage results for object.

Note If object receives coverage for multiple metrics, then the output argument
coverage is a cell array with each cell corresponding to the objective outcomes for a
metric. Each cell contains a two-element vector of the form [covered_outcomes
total_outcomes].

description

Structure array containing descriptions of each objective, and descriptions and execution
counts for each outcome within object.

Note If object receives coverage for multiple metrics, then the output argument
description is a cell array with each cell corresponding to the descriptions for a
metric. Each cell contains a structure array containing descriptions of each objective, and
descriptions and execution counts for each outcome within object.

Examples
Get coverage for all Proof Objective blocks in Verification Subsystem1
mdl = 'sldvdemo_powerwindow_vs';
open_system(mdl)
set_param(mdl, 'StopTime', '10')
testObj = cvtest(mdl);
testObj.settings.designverifier = 1;
data = cvsim(testObj);
verifSubsys = [mdl '/Verification Subsystem1'];
covProof = getCoverageInfo(data, verifSubsys, cvmetric.Sldv.proof)

 getCoverageInfo

1-59

covProof is a two-element vector of the form [covered_outcomestotal_outcomes]
showing 1 covered outcome out of 1 total proof objective outcome.

Get coverage for a specific Test Objective block in Verification Subsystem1

mdl = 'sldvdemo_powerwindow_vs';
open_system(mdl)
set_param(mdl, 'StopTime', '10')
testObj = cvtest(mdl);
testObj.settings.designverifier = 1;
data = cvsim(testObj);
verifSubsys = [mdl '/Verification Subsystem1'];
testObjBlock = [verifSubsys '/Test Objective2'];
covTest = getCoverageInfo(data, testObjBlock)

covTest is a two-element vector of the form [covered_outcomes total_outcomes]
showing 0 covered outcomes out of 1 total test objective outcome.

Get coverage data and descriptions for all available metrics recorded in Verification
Subsystem1

mdl = 'sldvdemo_powerwindow_vs';
open_system(mdl)
set_param(mdl, 'StopTime', '10')
testObj = cvtest(mdl);
testObj.settings.designverifier = 1;
data = cvsim(testObj);
verifSubsys = [mdl '/Verification Subsystem1'];
[covAll, descrAll] = getCoverageInfo(data, verifSubsys, ...
{cvmetric.Sldv.proof, cvmetric.Sldv.test})

covAll is a cell array with cells corresponding to the objective outcomes for each metric.
descrAll is a cell array with cells corresponding to descriptions of each metric.

covAll{1}
covAll{2}

covAll{1} is a two-element vector of the form [covered_outcomes total_outcomes]
showing 1 covered outcomes out of 1 total proof objective outcomes. covAll{2} is a two-
element vector of the form [covered_outcomes total_outcomes] showing 0 covered
outcomes out of 1 total test objective outcomes.

1 Functions — Alphabetical List

1-60

descrAll{1}
descrAll{2}

descrAll{1} is a structure array containing descriptions of each proof objective, and
descriptions and execution counts for each outcome. descrAll{2} is a structure array
containing descriptions of each test objective, and descriptions and execution counts for
each outcome.

Alternatives
Use the coverage settings to collect and display coverage results for Simulink Design
Verifier library blocks:

1 Open the model.
2 In the Model Editor, select Analysis > Coverage > Settings.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable

coverage analysis.
4 Under Coverage metrics, select Objectives and constraints.
5 Click OK to close the Configuration Parameters dialog box and save your changes.
6 Simulate the model and review the results.

See Also
complexityinfo | conditioninfo | cvsim | decisioninfo | mcdcinfo |
overflowsaturationinfo | sigrangeinfo | sigsizeinfo | tableinfo

Topics
“Simulink Design Verifier Coverage”

Introduced in R2009b

 getCoverageInfo

1-61

mcdcinfo
Retrieve modified condition/decision coverage information from cvdata object

Syntax
coverage = mcdcinfo(cvdo, object)
coverage = mcdcinfo(cvdo, object, mode)
coverage = mcdcinfo(cvdo, object, ignore_descendants)
[coverage, description] = mcdcinfo(cvdo, object)

Description
coverage = mcdcinfo(cvdo, object) returns modified condition/decision coverage
(MCDC) results from the cvdata object cvdo for the model component specified by
object.

coverage = mcdcinfo(cvdo, object, mode) returns modified condition/decision
coverage (MCDC) results from the cvdata object cvdo for the model component
specified by object for the simulation mode mode.

coverage = mcdcinfo(cvdo, object, ignore_descendants) returns MCDC
results for object, depending on the value of ignore_descendants.

[coverage, description] = mcdcinfo(cvdo, object) returns MCDC results and
text descriptions of each condition/decision in object.

Input Arguments
cvdo

cvdata object

ignore_descendants

Logical value specifying whether to ignore the coverage of descendant objects

1 Functions — Alphabetical List

1-62

1 — Ignore coverage of descendant objects
0 — Collect coverage for descendant objects

object

The object argument specifies an object in the Simulink model or Stateflow diagram
that receives decision coverage. Valid values for object include the following:

Object Specification Description
BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a Stateflow chart or

atomic subchart and the ID of an object
contained in that chart or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or
atomic subchart and a Stateflow object API
handle contained in that chart or subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or
atomic subchart and the ID of an object
contained in that chart or subchart

When specifying an S-function block, valid values for object include the following:

Object Specification Description
{BlockPath, fName} Cell array with the path to an S-Function block

and the name of a source file.
{BlockHandle, fName} Cell array with an S-Function block handle and

the name of a source file.
{BlockPath, fName, funName} Cell array with the path to an S-Function block,

the name of a source file, and a function name.
{BlockHandle, fName, funName} Cell array with an S-Function block handle, the

name of a source file an a function name.

 mcdcinfo

1-63

For coverage data collected during Software-in-the-Loop (SIL) mode or Processor-in-the-
Loop (PIL) simulation mode, valid values for object include the following:

Object Specification Description
{fileName, funName} Cell array with the name of a source file and a

function name.
{Model, fileName} Cell array with a model name (or model handle)

and the name of a source file.
{Model, fileName, funName} Cell array with a model name (or model handle),

the name of a source file, and a function name.

mode

The mode argument specifies the simulation mode for coverage. Valid values for mode
include the following:

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefSIL' (or
'ModelRefPIL')

Model reference in Software-in-the-Loop (SIL) or
Processor-in-the-Loop (PIL) simulation mode.

'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with
code interface set to top model.

Output Arguments
coverage

Two-element vector of the form [covered_outcomes total_outcomes]. coverage is
empty if cvdo does not contain modified condition/decision coverage results for object.
The two elements are:

covered_outcomes Number of condition/decision outcomes
satisfied for object

1 Functions — Alphabetical List

1-64

total_outcomes Total number of condition/decision
outcomes for object

description

A structure array containing the following fields:

condition A structure array containing condition/
decision info for individual condition
outcomes

isFiltered Whether the block is filtered
filterRationale The filtering rationale
justifiedCoverage The justified coverage conditions
isJustified Whether the block is justified

Examples
Collect MCDC coverage for the slvnvdemo_cv_small_controller model and
determine the percentage of MCDC coverage collected for the Logic block in the Gain
subsystem:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
%Create test specification object
testObj = cvtest(mdl)
%Enable MCDC coverage
testObj.settings.mcdc = 1;
%Simulate model
data = cvsim(testObj)
%Retrieve MCDC results for Logic block
blk_handle = get_param([mdl, '/Gain/Logic'], 'Handle');
cov = mcdcinfo(data, blk_handle)
%Percentage of MCDC outcomes covered
percent_cov = 100 * cov(1) / cov(2)

Alternatives
Use the coverage settings to collect MCDC coverage for a model:

 mcdcinfo

1-65

1 Open the model.
2 In the Model Editor, select Analysis > Coverage > Settings.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable

coverage analysis.
4 Under Coverage metrics, select MCDC as the structural coverage level.
5 On the Coverage > Results pane, specify the output you need.
6 Click OK to close the Configuration Parameters dialog box and save your changes.
7 Simulate the model and review the MCDC coverage results.

See Also
complexityinfo | conditioninfo | cvsim | decisioninfo | getCoverageInfo |
overflowsaturationinfo | sigrangeinfo | sigsizeinfo | tableinfo

Topics
“Modified Condition/Decision Coverage (MCDC)”
“MCDC Analysis”

Introduced in R2006b

1 Functions — Alphabetical List

1-66

overflowsaturationinfo
Retrieve saturation on integer overflow coverage from cvdata object

Syntax
coverage = overflowsaturationinfo(covdata, object)
coverage = overflowsaturationinfo(covdata, object,
ignore_descendants)
[coverage, description] = overflowsaturationinfo(covdata, object)

Description
coverage = overflowsaturationinfo(covdata, object) returns saturation on
integer overflow coverage results from the cvdata object covdata for the model object
specified by object and its descendants.

coverage = overflowsaturationinfo(covdata, object,
ignore_descendants) returns saturation on integer overflow coverage results from the
cvdata object covdata for the model object specified by object and, depending on the
value of ignore_descendants, descendant objects.

[coverage, description] = overflowsaturationinfo(covdata, object)
returns saturation on integer overflow coverage results from the cvdata object covdata
for the model object specified by object, and textual descriptions of each coverage
outcome.

Examples

Collect Saturation on Integer Overflow Coverage for MinMax Block

Collect saturation on integer overflow coverage information for a MinMax block in the
example model sldemo_fuelsys.

 overflowsaturationinfo

1-67

Open the sldemo_fuelsys example model. Create a model coverage test specification
object for the Mixing & Combustion subsystem of the Engine Gas Dynamics subsystem.

open_system('sldemo_fuelsys');
testObj = cvtest('sldemo_fuelsys/Engine Gas Dynamics/', ...
 'Mixing & Combustion');

In the model coverage test specification object, specify to collect saturation on overflow
coverage.

testObj.settings.overflowsaturation = 1;

Simulate the model and collect coverage results in a new cvdata object.

dataObj = cvsim(testObj);

Get the saturation on overflow coverage results for the MinMax block in the Mixing &
Combustion subsystem. The coverage results are stored in a two-element vector of the
form [covered_outcomes total_outcomes].

blockHandle = get_param('sldemo_fuelsys/' ...
 'Engine Gas Dynamics/Mixing & Combustion/MinMax','Handle');
covResults = overflowsaturationinfo(dataObj, blockHandle)

covResults =

 1 2

One out of two saturation on integer overflow decision outcomes were satisfied for the
MinMax block in the Mixing & Combustion subsystem, so it received 50% saturation on
integer overflow coverage.

Collect Saturation on Integer Overflow Coverage and Description for Example
Model

Collect saturation on integer overflow coverage for the example model
slvnvdemo_saturation_on_overflow_coverage. Review collected coverage results
and description for Sum block in Controller subsystem.

Open the slvnvdemo_saturation_on_overflow_coverage example model.

open_system('slvnvdemo_saturation_on_overflow_coverage');

1 Functions — Alphabetical List

1-68

Simulate the model and collect coverage results in a new cvdata object.

dataObj = cvsim('slvnvdemo_saturation_on_overflow_coverage');

Retrieve saturation on integer overflow coverage results and description for the Sum
block in the Controller subsystem of the Test Unit subsystem.

[covResults, covDesc] = overflowsaturationinfo(dataObj, ...
 'slvnvdemo_saturation_on_overflow_coverage/Test Unit /' ...
 'Controller/Sum')

covResults =

 1 2

covDesc =

 isFiltered: 0
 decision: [1x1 struct]

One out of two saturation on integer overflow decision outcomes were satisfied for the
Sum block, so it received 50% saturation on integer overflow coverage.

Review the number of times the Sum block evaluated to each saturation on integer
overflow outcome during simulation.

covDesc.decision.outcome(1)

ans =

 executionCount: 3
 text: 'false'

covDesc.decision.outcome(2)

ans =

 executionCount: 0
 text: 'true'

During simulation, integer overflow did not occur in the Sum block.

 overflowsaturationinfo

1-69

If integer overflow is not possible for a block in your model, consider clearing the
Saturate on integer overflow block parameter to optimize efficiency of your generated
code.

Input Arguments
covdata — Coverage results data
cvdata object

Coverage results data, specified as a cvdata object.

object — Model or model component
full path | handle

Model or model component, specified as a full path, handle, or array of paths or handles.

Object Specification Description
BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a Stateflow chart or

atomic subchart and the ID of an object
contained in that chart or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or
atomic subchart and a Stateflow object API
handle contained in that chart or subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or
atomic subchart and the ID of an object
contained in that chart or subchart

Example: 'slvnvdemo_saturation_on_overflow_coverage'
Example: get_param('slvnvdemo_cv_small_controller/Saturation',
'Handle')

1 Functions — Alphabetical List

1-70

ignore_descendants — Preference to ignore coverage of descendant objects
0 (default) | 1

Preference to ignore coverage of descendant objects, specified as a logical value.
1 — Ignore coverage of descendant objects
0 — Collect coverage for descendant objects
Data Types: logical

Output Arguments
coverage — Saturation on overflow coverage results for object
numerical vector

Saturation on overflow coverage results, stored in a two-element vector of the form
[covered_outcomes total_outcomes]. The two elements are:

covered_outcomes Number of saturation on integer overflow
outcomes satisfied for object

total_outcomes Total number of saturation on integer
overflow outcomes for object

Data Types: double

description — Textual description of coverage outcomes
structure array

Textual description of coverage outcomes for the model component specified by object,
returned as a structure array. Depending on the types of model coverage collected, the
structure array can have different fields. If only saturation on overflow coverage is
collected, the structure array contains the following fields:

isFiltered 0 if the model component specified by
object is not excluded from coverage
recording. 1 if the model component
specified by object is excluded from
coverage recording. For more information
about excluding objects from coverage, see
“Coverage Filtering”.

 overflowsaturationinfo

1-71

decision.text 'Saturate on integer overflow'
decision.outcome Structure array containing two fields for

each coverage outcome:

executionCount Number of times
saturation on integer
overflow for object
evaluated to the
outcome described
by text.

text 'true' or 'false'

Saturation on integer overflow has two
possible outcomes, 'true' and 'false'.

decision.isFiltered 0 if the model component specified by
object is not excluded from coverage
recording. 1 if the model component
specified by object is excluded from
coverage recording. For more information
about excluding objects from coverage, see
“Coverage Filtering”.

decision.filterRationale Rationale for filtering the model component
specified by object, if object is excluded
from coverage and a rationale is specified.
For more information about excluding
objects from coverage, see “Coverage
Filtering”.

Data Types: struct

See Also
complexityinfo | conditioninfo | cvsim | cvtest | decisioninfo |
getCoverageInfo | mcdcinfo | sigrangeinfo | sigsizeinfo | tableinfo

Topics
“Command Line Verification Tutorial”
“Saturate on Integer Overflow Coverage”

1 Functions — Alphabetical List

1-72

Introduced in R2013a

 overflowsaturationinfo

1-73

relationalboundaryinfo
Retrieve relational boundary coverage from cvdata object

Syntax
coverage = relationalboundaryinfo(covdata, object)
coverage = relationalboundaryinfo(covdata, object,mode)
coverage = relationalboundaryinfo(covdata, object,
ignore_descendants)
[coverage, description] = relationalboundaryinfo(covdata, object)

Description
coverage = relationalboundaryinfo(covdata, object) returns relational
boundary coverage results from the cvdata object covdata for the model object
specified by object and its descendants.

coverage = relationalboundaryinfo(covdata, object,mode) returns
relational boundary coverage results from the cvdata object covdata for the model
object specified by object and its descendants for the simulation mode mode.

coverage = relationalboundaryinfo(covdata, object,
ignore_descendants) returns relational boundary coverage results from the cvdata
object covdata for the model object specified by object and, depending on the value of
ignore_descendants, descendant objects.

[coverage, description] = relationalboundaryinfo(covdata, object)
returns relational boundary coverage results from the cvdata object covdata for the
model object specified by object, and textual descriptions of each coverage outcome.

Examples

1 Functions — Alphabetical List

1-74

Collect Relational Boundary Coverage for Supported Block in Model

This example shows how to collect relational boundary coverage information for a
Saturation block in a model. For more information on blocks supported for relational
boundary coverage, see “Model Objects That Receive Coverage”.

Open the slvnvdemo_cv_small_controller model. Create a model coverage test
specification object for the model.

open_system('slvnvdemo_cv_small_controller');
testObj = cvtest('slvnvdemo_cv_small_controller');

In the model coverage test specification object, activate relational boundary coverage.

testObj.settings.relationalop = 1;

Simulate the model and collect coverage results in a cvdata object.

dataObj = cvsim(testObj);

Obtain relational boundary coverage results for the Saturation block in
slvnvdemo_cv_small_controller. The coverage results are stored in a two-element
vector of the form [covered_outcomes total_outcomes].

blockHandle = get_param('slvnvdemo_cv_small_controller/Saturation','Handle');;
[covResults, covDesc] = relationalboundaryinfo(dataObj, blockHandle)

covResults =

 2 4

covDesc =

 isFiltered: 0
 decision: [1x2 struct]

The field decision is a 1 X 2 structure. Each element of decision corresponds to a
relational operation in the block. The Saturation block contains two comparisons. The
first comparison is with a lower limit and the second with an upper limit. Therefore,
decision is a 2-element structure.

View the first operation in the block that receives relational boundary coverage. For the
Saturation block, the first relational operation is input > lowerlimit.

 relationalboundaryinfo

1-75

covDesc.decision(1)

ans =

 outcome: [1x2 struct]
 text: 'input - lowerlimit'
 isFiltered: 0
 filterRationale: ''

The text field shows the two operands. The isFiltered field is set to 1 if the block is
filtered from relational boundary coverage. For more information, see “Coverage
Filtering”.

View results for the first relational operation in the block.

for(i=1:2)
 covDesc.decision(1).outcome(i)
end

ans =

 isActive: 1
 execCount: 0
 text: '[-tol..0]'

ans =

 isActive: 1
 execCount: 0
 text: '(0..tol]'

View the second operation in the block that receives relational boundary coverage. For
the Saturation block, the second relational operation is input < upperlimit.

covDesc.decision(2)

ans =

 outcome: [1x2 struct]
 text: 'input - upperlimit'
 isFiltered: 0
 filterRationale: ''

View results for the second relational operation in the block.

1 Functions — Alphabetical List

1-76

for(i=1:2)
 covDesc.decision(2).outcome(i)
end

ans =

 isActive: 1
 execCount: 1
 text: '[-tol..0)'

ans =

 isActive: 1
 execCount: 2
 text: '[0..tol]'

Input Arguments
covdata — Coverage results data
cvdata object

Coverage results data, specified as a cvdata object.

object — Model or model component
full path | handle

Model or model component, specified as a full path, handle, or array of paths or handles.

Object Specification Description
BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object
sfID Stateflow ID
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a Stateflow chart or

atomic subchart and the ID of an object
contained in that chart or subchart

 relationalboundaryinfo

1-77

Object Specification Description
{BlockPath, sfObj} Cell array with the path to a Stateflow chart or

atomic subchart and a Stateflow object API
handle contained in that chart or subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or
atomic subchart and the ID of an object
contained in that chart or subchart

When specifying an S-function block, valid values for object include the following:

Object Specification Description
{BlockPath, fName} Cell array with the path to an S-Function block

and the name of a source file.
{BlockHandle, fName} Cell array with an S-Function block handle and

the name of a source file.
{BlockPath, fName, funName} Cell array with the path to an S-Function block,

the name of a source file, and a function name.
{BlockHandle, fName, funName} Cell array with an S-Function block handle, the

name of a source file an a function name.

For coverage data collected during Software-in-the-Loop (SIL) mode or Processor-in-the-
Loop (PIL) simulation mode, valid values for object include the following:

Object Specification Description
{fileName, funName} Cell array with the name of a source file and a

function name.
{Model, fileName} Cell array with a model name (or model handle)

and the name of a source file.
{Model, fileName, funName} Cell array with a model name (or model handle),

the name of a source file, and a function name.

Example: get_param('slvnvdemo_cv_small_controller/Saturation',
'Handle')

mode — The mode argument specifies the simulation mode for coverage
character vector or string

Valid values for mode include the following:

1 Functions — Alphabetical List

1-78

Object Specification Description
'Normal' Model in Normal simulation mode.
'SIL' (or 'PIL') Model in Software-in-the-Loop (SIL) or

Processor-in-the-Loop (PIL) simulation mode.
'ModelRefSIL' (or
'ModelRefPIL')

Model reference in Software-in-the-Loop (SIL) or
Processor-in-the-Loop (PIL) simulation mode.

'ModelRefTopSIL' (or
'ModelRefTopPIL')

Model reference in Software-in-the-Loop (SIL or
Processor-in-the-Loop (PIL) simulation mode with
code interface set to top model.

ignore_descendants — Preference to ignore coverage of descendant objects
0 (default) | 1

Preference to ignore coverage of descendant objects, specified as a logical value.
1 — Ignore coverage of descendant objects
0 — Collect coverage for descendant objects
Data Types: logical

Output Arguments
coverage — Relational boundary coverage results for object
numerical vector

Relational boundary coverage results, stored in a two-element vector of the form
[covered_outcomes total_outcomes]. The two elements are:

covered_outcomes Number of relational boundary outcomes
satisfied for object

total_outcomes Total number of relational boundary
outcomes for object

Data Types: double

description — Textual description of coverage outcomes
structure array

Textual description of coverage outcomes for the model component specified by object,
returned as a structure array. Depending on the types of model coverage collected, the

 relationalboundaryinfo

1-79

structure array can have different fields. If only relational boundary coverage is collected,
the structure array contains the following fields:

isFiltered 0 if the model component specified by
object is not excluded from coverage
recording. 1 if the model component
specified by object is excluded from
coverage recording. For more information
about excluding objects from coverage, see
“Coverage Filtering”.

decision.text Character vector or string of the form:

op_1-op_2

• op_1 is the left operand in the relational
operation.

• op_2 is the right operand in the
relational operation.

1 Functions — Alphabetical List

1-80

decision.outcome Structure array containing two fields for
each coverage outcome:

isActive Boolean variable. If
this variable is
false, it indicates
that decisions were
not evaluated during
simulation due to
variable signal size.

execCount Number of times
op_1-op_2 fell in
the range described
by text

text The range around
the relational
boundary considered
for coverage. For
more information,
see “Relational
Boundary”.

decision.isFiltered 0 if the model component specified by
object is not excluded from coverage
recording. 1 if the model component
specified by object is excluded from
coverage recording. For more information
about excluding objects from coverage, see
“Coverage Filtering”.

decision.filterRationale Rationale for filtering the model component
specified by object, if object is excluded
from coverage and a rationale is specified.
For more information about excluding
objects from coverage, see “Coverage
Filtering”.

Data Types: struct

 relationalboundaryinfo

1-81

See Also
complexityinfo | conditioninfo | cvsim | cvtest | decisioninfo |
getCoverageInfo | mcdcinfo | overflowsaturationinfo | sigrangeinfo |
sigsizeinfo | tableinfo

Topics
“Command Line Verification Tutorial”
“Relational Boundary Coverage”

Introduced in R2014b

1 Functions — Alphabetical List

1-82

sigrangeinfo
Retrieve signal range coverage information from cvdata object

Syntax
[min, max] = sigrangeinfo(cvdo, object)
[min, max] = sigrangeinfo(cvdo, object, portID)

Description
[min, max] = sigrangeinfo(cvdo, object) returns the minimum and maximum
signal values output by the model component object within the cvdata object cvdo.

[min, max] = sigrangeinfo(cvdo, object, portID) returns the minimum and
maximum signal values associated with the output port portID of the Simulink block
object.

Input Arguments
cvdo

cvdata object

object

An object in the model or Stateflow chart that receives signal range coverage. Valid
values for object include the following:

Object Specification Description
BlockPath Full path to a model or block
BlockHandle Handle to a model or block
slObj Handle to a Simulink API object

 sigrangeinfo

1-83

Object Specification Description
sfID Stateflow ID
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a Stateflow chart or

atomic subchart and the ID of an object contained
in that chart or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or
atomic subchart and a Stateflow object API handle
contained in that chart or subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or
atomic subchart and the ID of an object contained
in that chart or subchart

portID

Output port of the block object

Output Arguments
max

Maximum signal value output by the model component object within the cvdata object,
cvdo. If object outputs a vector, min and max are also vectors.

min

Minimum signal value output by the model component object within the cvdata object,
cvdo. If object outputs a vector, min and max are also vectors.

Examples
Collect signal range data for the Product block in the
slvnvdemo_cv_small_controller model:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
%Create test spec object

1 Functions — Alphabetical List

1-84

testObj = cvtest(mdl)
%Enable signal range coverage
testObj.settings.sigrange = 1;
%Simulate the model
data = cvsim(testObj)
blk_handle = get_param([mdl, '/Product'], 'Handle');
%Get signal range data
[minVal, maxVal] = sigrangeinfo(data, blk_handle)

Alternatives
Use the coverage settings to collect signal range coverage for a model:

1 Open the model for which you want to collect signal range coverage.
2 In the Model Editor, select Analysis > Coverage > Settings.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable

coverage analysis.
4 Under Coverage metrics, select Signal Range.
5 On the Coverage > Results pane, specify the output you need.
6 Click OK to close the Configuration Parameters dialog box and save your changes.
7 Simulate the model and review the results.

See Also
complexityinfo | conditioninfo | cvsim | decisioninfo | getCoverageInfo |
mcdcinfo | overflowsaturationinfo | sigsizeinfo | tableinfo

Introduced in R2006b

 sigrangeinfo

1-85

sigsizeinfo
Retrieve signal size coverage information from cvdata object

Syntax
[min, max, allocated] = sigsizeinfo(data, object)
[min, max, allocated] = sigsizeinfo(data, object, portID)

Description
[min, max, allocated] = sigsizeinfo(data, object) returns the minimum,
maximum, and allocated signal sizes for the outputs of model component object within
the coverage data object data, if object supports variable size signals.

[min, max, allocated] = sigsizeinfo(data, object, portID) returns the
minimum and maximum signal sizes associated with the output port portID of the model
component object.

Input Arguments
data

cvdata object

object

An object in the model or Stateflow chart that receives signal size coverage. Valid values
for object include the following:

Object Specification Description
BlockPath Full path to a Simulink model or block
BlockHandle Handle to a Simulink model or block
slObj Handle to a Simulink API object

1 Functions — Alphabetical List

1-86

Object Specification Description
sfID Stateflow ID
sfObj Handle to a Stateflow API object
{BlockPath, sfID} Cell array with the path to a Stateflow chart or

atomic subchart and the ID of an object contained
in that chart or subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow chart or
atomic subchart and a Stateflow object API handle
contained in that chart or subchart

{BlockHandle, sfID} Cell array with a handle to a Stateflow chart or
atomic subchart and the ID of an object contained
in that chart or subchart

portID

Output port number of the model component object

Output Arguments
max

Maximum signal size output by the model component object within the cvdata object
data. If object has multiple outputs, max is a vector.

min

Minimum signal size output by the model component object within the cvdata object
data. If object has multiple outputs, min is a vector.

allocated

Allocated signal size output by the model component object within the cvdata object
data. If object has multiple outputs, allocated is a vector.

 sigsizeinfo

1-87

Examples
Collect signal size coverage data for the Switch block in the sldemo_varsize_basic
model:

mdl = 'sldemo_varsize_basic';
open_system(mdl);
%Create test spec object
testObj = cvtest(mdl);
%Enable signal size coverage
testObj.settings.sigsize=1;
%Simulate the model
data = cvsim(testObj);
%Set the block handle
blk_handle = get_param([mdl, '/Switch'], 'Handle');
%Get signal size data
[minVal, maxVal, allocVal] = sigsizeinfo(data, blk_handle);

Alternatives
Use the coverage settings to collect signal size coverage for a model:

1 Open the model for which you want to collect signal size coverage.
2 In the Simulink Editor, select Analysis > Coverage > Settings.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable

coverage analysis.
4 Under Coverage metrics, select Signal Size.
5 On the Coverage > Results pane, specify the output you need.
6 Click OK to close the Configuration Parameters dialog box and save your changes.
7 Simulate the model and review the results.

See Also
complexityinfo | conditioninfo | cvsim | decisioninfo | mcdcinfo |
sigrangeinfo | tableinfo

Introduced in R2010b

1 Functions — Alphabetical List

1-88

slvnvextract
Extract subsystem or subchart contents into new model

Syntax
newModel = slvnvextract(subcomponent)
newModel = slvnvextract(subcomponent,showModel)

Description
newModel = slvnvextract(subcomponent) extracts the contents of the Atomic
Subsystem block or atomic subchart subcomponent and creates a model.
slvnvextract returns the name of the new model in newModel. If the model name
already exists,slvnvextract uses the subsystem or subchart name for the model name,
appending a numeral to the model name.

Note If an atomic subchart calls an exported graphical function that is outside the
subchart, slvnvextract creates the model, but the new model does not compile.

newModel = slvnvextract(subcomponent,showModel) opens the extracted model
if you set showModel to true. The extracted model is loaded only if you set showModel
to false.

Input Arguments
subcomponent — Subsystem or subchart whose contents are extracted
character vector or string

The full path to the atomic subsystem or atomic subchart whose contents are extracted.

showModel — Display extracted model
true (default) | false

 slvnvextract

1-89

Specify if you want the extracted model to be displayed.

Output Arguments
newModel — The name of the new extracted model
character vector or string

Reports the name of the new extracted model created by slvnvextract.

Examples

Extract Subsystem and Copy to a New Model
Extract the Atomic Subsystem block, Bus Counter, from the
sldemo_mdlref_conversion model and copy it into a new model:

open_system('sldemo_mdlref_conversion');
newmodel = slvnvextract('sldemo_mdlref_conversion/Bus Counter', true);

Extract Subchart and Copy to a New Model
Extract the Atomic Subchart block, Sensor1, from the sf_atomic_sensor_pair model
and copy it into a new model:

open_system('sf_atomic_sensor_pair');
newmodel = slvnvextract('sf_atomic_sensor_pair/RedundantSensors/Sensor1', true);

Introduced in R2010b

1 Functions — Alphabetical List

1-90

slvnvharnessopts
Generate default options for slvnvmakeharness

Syntax
harnessopts = slvnvharnessopts

Description
harnessopts = slvnvharnessopts generates the default configuration for running
slvnvmakeharness.

Output Arguments
harnessopts — Default configuration for slvnvmakeharness
structure

The harnessopts structure can have the following fields. If you do not specify any
values, default values are used.

Field Description
harnessFilePath Specifies the file path for creating the harness model. If

an invalid path is specified, slvnvmakeharness does
not save the harness model, but it creates and opens the
harness model. If you do not specify this option,
slvnvmakeharness generates a new harness model and
saves it in the MATLAB current folder.

Default: ''

 slvnvharnessopts

1-91

Field Description
modelRefHarness Generates the test harness model that includes model in

a Model block. When false, the test harness model
includes a copy of model.

Default: true
usedSignalsOnly When true, the Signal Builder block in the harness

model has signals only for input signals in the model. You
must have the Simulink Design Verifier software and
model must be compatible with that software to detect
the input signals.

Default: false

Examples

Create a Test Harness with Default Options
% Create a test harness for the sldemo_mdlref_house model
% using the default options:
open_system('sldemo_mdlref_house');
harnessOpts = slvnvharnessopts;
[harnessfile] = slvnvmakeharness('sldemo_mdlref_house',...
 '', harnessOpts);

See Also
slvnvmakeharness

Introduced in R2010b

1 Functions — Alphabetical List

1-92

slvnvlogsignals
Log test data for component or model during simulation

Syntax
data = slvnvlogsignals(model_block)
data = slvnvlogsignals(harness_model)
data = slvnvlogsignals(harness_model, test_case_index)

Description
data = slvnvlogsignals(model_block) simulates the model that contains
model_block and logs the input signals to the model_block block. model_block must
be a Simulink Model block.

data = slvnvlogsignals(harness_model) simulates every test case in
harness_model and logs the input signals to the Test Unit block in the harness model.
Generate harness_model by using the Simulink Design Verifier analysis,
sldvmakeharness, or slvnvmakeharness.

data = slvnvlogsignals(harness_model, test_case_index) simulates every
test case in the Signal Builder block of the harness_model specified by
test_case_index. slvnvlogsignals logs the input signals to the Test Unit block in
the harness model. If you omit test_case_index, slvnvlogsignals simulates every
test case in the Signal Builder.

Input Arguments
model_block — Component or model
character vector or string | handle

The full block path name or handle to a Simulink Model block, specified as a character
vector or string.

 slvnvlogsignals

1-93

harness_model — Harness name
character vector or string | handle

Name or handle to a harness model that the Simulink Design Verifier software,
sldvmakeharness, or slvnvmakeharness creates, specified as a character vector or
string.

test_case_index — Indices of test cases to be simulated
Integer array

Array of integers that specifies which test cases in the Signal Builder block of the harness
model to simulate.

Output Arguments
data — Output data
structure

Structure that contains the logged data.

Examples

Log and Visualize Simulation Data

Log simulation data for a Model block. Use the logged data to create a harness model and
visualize the data in the referenced model.

% Simulate the CounterB Model block, which references the
% sldemo_mdlref_counter model, in the context of the
% sldemo_mdlref_basic model and log the data:
open_system('sldemo_mdlref_basic');
data = slvnvlogsignals('sldemo_mdlref_basic/CounterB');

% Create a harness model for sldemo_mdlref_counter using the
% logged data and the default harness options:
load_system('sldemo_mdlref_counter');
harnessOpts = slvnvharnessopts
[harnessFilePath] = ...

1 Functions — Alphabetical List

1-94

 slvnvmakeharness('sldemo_mdlref_counter', data, ...
 harnessOpts);

See Also
sldvmakeharness | slvnvmakeharness | slvnvruncgvtest | slvnvruntest

Introduced in R2010b

 slvnvlogsignals

1-95

slvnvmakeharness
Generate Simulink Coverage harness model

Syntax
harnessFilePath = slvnvmakeharness(model)
harnessFilePath = slvnvmakeharness(model, dataFile)
harnessFilePath = slvnvmakeharness(model, dataFile, harnessOpts)

Description
harnessFilePath = slvnvmakeharness(model) generates a test harness from
model, which is a handle to a Simulink model or a character vector or string with the
model name. slvnvmakeharness returns the path and file name of the generated
harness model in harnessFilePath. slvnvmakeharness creates a harness model
containing the Model block, a Signal Builder block, and a size-type conversion block, by
default. The test harness includes one default test case that specifies the default values
for all input signals.

harnessFilePath = slvnvmakeharness(model, dataFile) generates a test
harness from the data file dataFile.

harnessFilePath = slvnvmakeharness(model, dataFile, harnessOpts)
generates a test harness from model by using the dataFile and harnessOpts, which
specifies the harness creation options. Requires '' for dataFile if dataFile is not
available. The default dataFile argument creates a test harness with a single test case
with default values for the inputs.

Input Arguments
model — Simulink model
character vector or string | handle

Simulink model or the model name.

1 Functions — Alphabetical List

1-96

dataFile — Structure created by slvnvlogsignals or slvnvmergedata
'' (default) | structure

Contains information about the model, its input and output ports, and any preexisting test
signals. This argument can be either the structure itself or the name of the .mat file
containing this structure. Use this parameter when you have previously logged test data
that you want to import into a new test harness.

harnessOpts — Configuration for slvnvmakeharness
structure

A structure whose fields specify the configuration for slvnvmakeharness.

Field Description
harnessFilePath Specifies the file path for creating the harness model. If

an invalid path is specified, slvnvmakeharness does not
save the harness model, but it creates and opens the
harness model. If you do not specify this option, the
slvnvoptions object is used. Also, slvnvmakeharness
generates a new harness model and saves it in the
MATLAB current folder.

Default: ''
modelRefHarness Generates the test harness model that includes model in

a Model block. When false, the test harness model
includes a copy of model.

Default: true
usedSignalsOnly When true, the Signal Builder block in the harness model

has signals for input signals in the model. You must have
the Simulink Design Verifier software and model must be
compatible with that software to detect the input signals.

Default: false

Note To create a default harnessOpts object, at the MATLAB command prompt, type:

slvnvharnessopts

 slvnvmakeharness

1-97

Output Arguments
harnessFilePath — Generated harness model
Character vector or string

The path and file name of the generated harness model.

Examples

Create a Test Harness Using the Default Options
Create a test harness for the sldemo_mdlref_house model using the default options:
open_system('sldemo_mdlref_house');
harnessOpts = slvnvharnessopts;
[harnessfile] = slvnvmakeharness('sldemo_mdlref_house', '', harnessOpts);

See Also
slvnvharnessopts | slvnvmergeharness

Introduced in R2010b

1 Functions — Alphabetical List

1-98

slvnvmergedata
Combine test data from data files

Syntax
merged_data = slvnvmergedata(data1,data2,...)

Description
merged_data = slvnvmergedata(data1,data2,...) combines two or more test
cases and counterexamples data into a single test case data structure merged_data.

Input Arguments
data — Structure that contains test case or counterexample data
structure

Generated by running slvnvlogsignals or by running a Simulink Design Verifier
analysis.

Output Arguments
merged_data — The merged test cases or counterexamples
structure

Structure that contains the merged test cases or counterexamples.

 slvnvmergedata

1-99

Examples

Log Signals and Merge Logged Data
% Open the sldemo_mdlref_basic model, which contains three Model blocks
% that reference the sldemo_mdlref_counter model:
sldemo_mdlref_basic;

% Log the input signals to the three Model blocks:
data1 = slvnvlogsignals('sldemo_mdlref_basic/CounterA');
data2 = slvnvlogsignals('sldemo_mdlref_basic/CounterB');
data3 = slvnvlogsignals('sldemo_mdlref_basic/CounterC');

% Merge the logged data:
merged_data = slvnvmergedata(data1, data2, data3);

% Simulate the referenced model, sldemo_mdlref_counter,for coverage with
% the merged data and display the coverage results in an HTML file.
open_system('sldemo_mdlref_counter');
runOpts = slvnvruntestopts;
runOpts.coverageEnabled = true;
[outData, initialCov] = slvnvruntest('sldemo_mdlref_counter', ...
 merged_data, runOpts);
cvhtml('Initial coverage', initialCov);

See Also
sldvrun | slvnvlogsignals | slvnvmakeharness | slvnvruncgvtest |
slvnvruntest

Introduced in R2011a

1 Functions — Alphabetical List

1-100

slvnvmergeharness
Combine test data from harness models

Syntax
status = slvnvmergeharness(name, models, initialization_commands)
initialization_commands
slvnvmergeharness

Description
status = slvnvmergeharness(name, models, initialization_commands)
collects the test data and initialization commands from each test harness model and saves
them in a handle to the new model.

initialization_commands is a cell array of character vectors or strings that are the
same length as models. It defines parameter settings for the test cases of each test
harness model.

slvnvmergeharness assumes that name and the rest of the models in models have only
one Signal Builder block on the top level. If a model in models does not meet this
restriction or its top-level Signal Builder block does not have the same number of signals
as the top-level Signal Builder block in name, slvnvmergeharness does not merge that
model's test data into name.

Input Arguments
name — Name of the new harness model, to be stored in the default MATLAB
folder
character vector or string

If name does not exist, slvnvmergeharness creates it as a copy of the first model in
models. slvnvmergeharness then merges data from other models listed in models into
this model. If you create name from a previous slvnvmergeharness run, subsequent

 slvnvmergeharness

1-101

runs of slvnvmergeharness for name maintain the structure and initialization from the
earlier run. If name matches an existing Simulink model, slvnvmergeharness merges
the test data from models into name.

models — Harness model names
cell array of character vectors or strings

Names of harness models that are inputs to slvnvmergeharness.

initialization_commands — Parameter settings for the test cases of each test
harness model
cell array of character vectors or strings

Cell array of character vectors or strings that is the same length as models.

Output Arguments
status — Status of data and initialization commands getting saved
1 | 0

slvnvmergeharness returns a status of 1 if the data and initialization commands are
saved in name. Otherwise, it returns 0.

Examples

Log Signals and Merge Test Harnesses
% Log the input signals to the three Model blocks in the sldemo_mdlref_basic example model
% that each reference the same model:
open_system('sldemo_mdlref_basic');
data1 = slvnvlogsignals('sldemo_mdlref_basic/CounterA');
data2 = slvnvlogsignals('sldemo_mdlref_basic/CounterB');
data3 = slvnvlogsignals('sldemo_mdlref_basic/CounterC');
open_system('sldemo_mdlref_counter');

% Make three test harnesses using the logged signals:
harness1FilePath = slvnvmakeharness('sldemo_mdlref_counter', data1);
harness2FilePath = slvnvmakeharness('sldemo_mdlref_counter', data2);
harness3FilePath = slvnvmakeharness('sldemo_mdlref_counter', data3)
[~, harness1] = fileparts(harness1FilePath);
[~, harness2] = fileparts(harness2FilePath);
[~, harness3] = fileparts(harness3FilePath);

1 Functions — Alphabetical List

1-102

% Merge the three test harnesses:
slvnvmergeharness('new_harness_model',{harness1, harness2, harness3});

See Also
slvnvlogsignals | slvnvmakeharness

Introduced in R2010b

 slvnvmergeharness

1-103

slvnvruncgvtest
Invoke Code Generation Verification (CGV) API and execute model

Syntax
cgvObject = slvnvruncgvtest(model, dataFile)
cgvObject = slvnvruncgvtest(model, dataFile, runOpts)

Description
cgvObject = slvnvruncgvtest(model, dataFile) invokes the Code Generation
Verification (CGV) API methods and executes the model by using all test cases in
dataFile. cgvObject is a cgv.CGV object that slvnvruncgvtest creates during the
execution of the model. slvnvruncgvtest sets the execution mode for cgvObject
to'sim' by default.

cgvObject = slvnvruncgvtest(model, dataFile, runOpts) invokes CGV API
methods and executes the model by using test cases in dataFile. runOpts defines the
options for executing the test cases. The settings in runOpts determine the configuration
of cgvObject.

Input Arguments
model — Model to execute
character vector or string

Name of the Simulink model that you execute.

dataFile — Input data
structure | character vector or string

Name of the data file or a structure that contains the input data. Generate data by either:

• Using the Simulink Design Verifier software to analyze the model.

1 Functions — Alphabetical List

1-104

• Using the slvnvlogsignals function.

runOpts — Specify the configuration of slvnvruncgvtest
structure

The fields of runOpts specify the configuration of slvnvruncgvtest .

Field Name Description
testIdx Test case index array to simulate from dataFile.

If testIdx = [] (the default), slvnvruncgvtest simulates
all test cases.

allowCopyModel If you have not configured your model to execute test cases
with the CGV API, this field specifies creating and configuring
the model.

If true and you have not configured your model to execute
test cases with the CGV API, slvnvruncgvtest copies the
model, fixes the configuration, and executes the test cases on
the copied model.

If false (the default), an error occurs if the tests cannot
execute with the CGV API.

Note If you have not configured the top-level model or any
referenced models to execute test cases, slvnvruncgvtest
does not copy the model, even if allowCopyModel is true.
An error occurs.

cgvCompType Defines the software-in-the-loop (SIL) or processor-in-the-loop
(PIL) approach for CGV:

• 'topmodel' (default)
• 'modelblock'

cgvConn Specifies mode of execution for CGV:

• 'sim' (default)
• 'sil'
• 'pil'

 slvnvruncgvtest

1-105

Note runOpts = slvnvruntestopts('cgv') returns a runOpts structure with the
default values for each field.

Output Arguments
cgvObject — Object created by slvnvruncgv test during the execution of model
cgv.CGV object

cgv.CGV object that slvnvruncgvtest creates during the execution of model.

slvnvruncgvtest saves the following data for each test case executed in an array of
Simulink.SimulationOutput objects inside cgvObject.

Field Description
tout_slvnvruncgvtest Simulation time
xout_slvnvruncgvtest State data
yout_slvnvruncgvtest Output signal data
logsout_slvnvruncgvtest Signal logging data for:

• Signals connected to outports
• Signals that are configured for logging

data on the model

Examples

Log Signals, Run Tests, and Compare Results by Using the
CGV API
% Open the sldemo_mdlref_basic example model and log the input signals to the CounterA Model block:
open_system('sldemo_mdlref_basic');
load_system('sldemo_mdlref_counter');
loggedData = slvnvlogsignals('sldemo_mdlref_basic/CounterA');

% Create the default configuration object for slvnvruncgvtest,and allow the model to be configured to
% execute test cases with the CGV API:
runOpts = slvnvruntestopts('cgv');
runOpts.allowCopyModel = true;

1 Functions — Alphabetical List

1-106

% Using the logged signals, execute slvnvruncgvtest — first in simulation mode, and then in
% Software-in-the-Loop (SIL) mode — to invoke the CGV API and execute the specified test
% cases on the generated code for the model:
cgvObjectSim = slvnvruncgvtest('sldemo_mdlref_counter', loggedData, runOpts);
runOpts.cgvConn = 'sil';
cgvObjectSil = slvnvruncgvtest('sldemo_mdlref_counter', loggedData, runOpts);

% Use the CGV API to compare the results of the first test case:
simout = cgvObjectSim.getOutputData(1);
silout = cgvObjectSil.getOutputData(1);
[matchNames, ~, mismatchNames, ~] = cgv.CGV.compare(simout, silout);
fprintf('\nTest Case: %d Signals match, %d Signals mismatch', ...
 length(matchNames), length(mismatchNames));

Tips
To run slvnvruncgvtest, you must have the Embedded Coder® software.

If your model has parameters that are not configured for executing test cases with the
CGV API, slvnvruncgvtest reports warnings about the invalid parameters. If you see
these warnings, do one of the following:

• Modify the invalid parameters and rerun slvnvruncgvtest.
• Set allowCopyModel in runOpts to be true and rerun slvnvruncgvtest.

slvnvruncgvtest makes a copy of your model configured for executing test cases,
and invokes the CGV API.

See Also
cgv.CGV | slvnvlogsignals | slvnvruntest | slvnvruntestopts

Introduced in R2010b

 slvnvruncgvtest

1-107

slvnvruntest
Simulate model by using input data

Syntax
outData = slvnvruntest(model, dataFile)
outData = slvnvruntest(model, dataFile, runOpts)
[outData, covData] = slvnvruntest(model, dataFile, runOpts)

Description
outData = slvnvruntest(model, dataFile) simulates model by using all the test
cases in dataFile. outData is an array of Simulink.SimulationOutput objects.
Each array element contains the simulation output data of the corresponding test case.

outData = slvnvruntest(model, dataFile, runOpts) simulates model by using
all the test cases in dataFile. runOpts defines the options for simulating the test cases.

[outData, covData] = slvnvruntest(model, dataFile, runOpts) simulates
model by using the test cases in dataFile. When the runOpts field coverageEnabled
is true, the Simulink Coverage™ software collects model coverage information during
the simulation. slvnvruntest returns the coverage data in the cvdata object covData.

Input Arguments
model — Simulink model that you simulate
character vector or string | handle

The Simulink model to simulate.

dataFile — Input data
character vector or string | structure

1 Functions — Alphabetical List

1-108

Name of the data file or structure that contains the input data. You can generate
dataFile with Simulink Design Verifier software, or by running the slvnvlogsignals
function.

runOpts — Configuration specification
structure

A structure whose fields specify the configuration of slvnvruntest.

Field Description
testIdx Test case index array to simulate from

dataFile. If testIdx is [], slvnvruntest
simulates all test cases.

Default: []
coverageEnabled If true, specifies that the Simulink Coverage

software collects model coverage data during
simulation.

Default: false
coverageSetting cvtest object for collecting model coverage. If

[], slvnvruntest uses the existing coverage
settings for model.

Default: []

Output Arguments
outData — Output objects obtained after simulating the test cases
array of Simulink.SimulationOutput objects

Each Simulink.SimulationOutput object has the following fields.

Field Name Description
tout_slvnvruntest Simulation time
xout_slvnvruntest State data
yout_slvnvruntest Output signal data

 slvnvruntest

1-109

Field Name Description
logsout_slvnvruntest Signal logging data for:

• Signals connected to outports
• Signals that are configured for logging

on the model

covData — Object that contains model coverage data
cvdata object

cvdata object that contains the model coverage data collected during simulation.

Examples
Analyze the Model and Examine the Output Data with the
Simulation Data Inspector
% Analyze the sldemo_mdlref_basic model and log the input signals to the CounterA Model block:
open_system('sldemo_mdlref_basic');
loggedData = slvnvlogsignals('sldemo_mdlref_basic/CounterA');

% Using the logged signals, simulate the model referenced in the Counter block (sldemo_mdlref_counter):
runOpts = slvnvruntestopts;
runOpts.coverageEnabled = true;
open_system('sldemo_mdlref_counter');
[outData] = slvnvruntest('sldemo_mdlref_counter',...
 loggedData, runOpts);

% Examine the output data from the first test case using the Simulation Data Inspector:
Simulink.sdi.createRun('Test Case 1 Output', 'namevalue',...
 {'output'}, {outData(1).find('logsout_slvnvruntest')});
Simulink.sdi.view;

Tips
The dataFile that you create with a Simulink Design Verifier analysis or by running
slvnvlogsignals contains time values and data values. When you simulate a model by
using these test cases, you might see missing coverage. This issue occurs when the time
values in the dataFile are not aligned with the current simulation time step due to
numeric calculation differences. You see this issue more frequently with multirate models
—models that have multiple sample times.

1 Functions — Alphabetical List

1-110

See Also
cvsim | cvtest | sim | slvnvruntestopts

Introduced in R2010b

 slvnvruntest

1-111

slvnvruntestopts
Generate simulation or execution options for slvnvruntest or slvnvruncgvtest

Syntax
runOpts = slvnvruntestopts
runOpts = slvnvruntestopts('cgv')

Description
runOpts = slvnvruntestopts generates a runOpts structure for slvnvruntest.

runOpts = slvnvruntestopts('cgv') generates a runOpts structure for
slvnvruncgvtest.

Output Arguments
runOpts — Configuration specification of slvnvruntest or slvnvruncgvtest
structure

runOpts can have the following fields. If you do not specify a field, slvnvruncgvtest or
slvnvruntest uses the default value.

Field Name Description
testIdx Test case index array to simulate or execute from data file.

If testIdx = [], all test cases are simulated or executed.

Default: []

1 Functions — Alphabetical List

1-112

Field Name Description
signalLoggingSaveForm
at

Available only for slvnvruntest.

Specifies the format of signal logging data for signals that
connects to the outport of the model and for intermediate
signals that are configured for logging.

If you specify Dataset, data is stored in the
Simulink.SimulationData.Dataset objects.

If you specify ModelDataLogs, data is stored in
Simulink.ModelDataLogs objects.

Default: 'Dataset'
coverageEnabled Available only for slvnvruntest.

If true, slvnvruntest collects model coverage data
during simulation.

Default: false
coverageSetting Available only for slvnvruntest.

cvtest object for collecting model coverage.

If coverageSetting is [], slvnvruntest uses the
coverage settings for the model specified in the call to
slvnvruntest.

Default: []

 slvnvruntestopts

1-113

Field Name Description
allowCopyModel Available only for slvnvruncgvtest.

If you have not configured your model to execute test cases
with the CGV API, this field specifies creating and
configuring the model.

If true and you have not configured the model to execute
test cases with the CGV API, slvnvruncgvtest copies
the model, fixes the configuration, and executes the test
cases on the copied model.

If false, an error occurs if the tests cannot execute with
the CGV API.

Note If you have not configured the top-level model or any
referenced models to execute test cases,
slvnvruncgvtest does not copy the model, even if
allowCopyModel is true. An error occurs.

Default:false
cgvCompType Available only for slvnvruncgvtest.

Defines the software-in-the-loop (SIL) or processor-in-the-
loop (PIL) approach for CGV:

• 'topmodel'
• 'modelblock'

Default:'topmodel'

1 Functions — Alphabetical List

1-114

Field Name Description
cgvConn Available only for slvnvruncgvtest.

Specifies mode of execution for CGV:

• 'sim'
• 'sil'
• 'pil'

Default:'sim'

Examples

Create runOpts Objects for slvnvruntest and
slvnvruncgvtest
% Create runOpts objects for slvnvruntest
runtest_opts = slvnvruntestopts;

% Create runOpts objects for slvnvruncgvtest
runcgvtest_opts = slvnvruntestopts('cgv')

Alternatives
Create a runOpts object at the MATLAB command line.

See Also
slvnvruncgvtest | slvnvruntest

Introduced in R2010b

 slvnvruntestopts

1-115

slwebview_cov
Export Simulink models to Web views with coverage

Syntax
filename = slwebview_cov(sysname)
filename = slwebview_cov(sysname,Name,Value)

Description
filename = slwebview_cov(sysname) exports the system sysname and its children
to a web page filename with contextual coverage information for the system displayed
on a separate panel of the layered model structure Web view.

filename = slwebview_cov(sysname,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Note You can use slwebview_cov only if you have also installed Simulink Report
Generator™.

Examples

Export All Layers

Export all the layers (including libraries and masks) from the system gcs to the file
filename

1 Functions — Alphabetical List

1-116

filename = slwebview_cov(gcs, 'LookUnderMasks', 'all', 'FollowLinks', 'on')

Input Arguments
sysname — The system to export to a Web view file
character vector or string containing the path to the system | handle to a subsystem or
block diagram | handle to a chart or subchart

Exports the specified system or subsystem and its child systems to a Web view file, with
contextual coverage information for the system displayed on a separate panel of the
layered model structure Web view. By default, child systems of the sysname system are
also exported. Use the SearchScope name-value pair to export other systems, in relation
to sysname.
Example: ‘sysname’

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
slwebview_cov(gcs,'SearchScope','CurrentAndBelow','LookUnderMasks','
all','FollowLinks','on')

SearchScope — Systems to export, relative to the sysname system
'CurrentAndBelow' (default) | 'Current' | 'CurrentAndAbove' | 'All'

'CurrentAndBelow' exports the Simulink system or the Stateflow chart specified by
sysname and all systems or charts that it contains.

'Current' exports only the Simulink system or the Stateflow chart specified by
sysname.

'CurrentAndAbove' exports the Simulink system or the Stateflow chart specified by the
sysname and all systems or charts that contain it.

'All' exports all Simulink systems or Stateflow charts in the model that contains the
system or chart specified by sysname.

 slwebview_cov

1-117

Data Types: char

LookUnderMasks — Specifies whether to export the ability to interact with
masked blocks
'none' (default) | 'all'

'none' does not export masked blocks in the Web view. Masked blocks are included in
the exported systems, but you cannot access the contents of the masked blocks.

'all' exports all masked blocks.
Data Types: char

FollowLinks — Specifies whether to follow links into library blocks
'off' (default) | 'on'

'off' does not allow you to follow links into library blocks in a Web view.

'on' allows you to follow links into library blocks in a Web view.
Data Types: char

FollowModelReference — Specifies whether to access referenced models in a
Web view
'off' (default) | 'on'

'off' does not allow you to access referenced models in a Web view.

'on' allows you to access referenced models in a Web view.
Data Types: char

ViewFile — Specifies whether to display the Web view in a Web browser when
you export the Web view
'on' (default) | 'off'

'on' displays the Web view in a Web browser when you export the Web view.

'off' does not display the Web view in a Web browser when you export the Web view.
Data Types: char

ShowProgressBar — Specifies whether to display the status bar when you export
a Web view
'on' (default) | 'off'

1 Functions — Alphabetical List

1-118

'on' displays the status bar when you export a Web view.

'off' does not display the status bar when you export a Web view.
Data Types: char

CovData — cvdata objects to use
cvdata

The coverage data to use, specified as the comma-separated pair consisting of
'CovData' and the cvdata objects to use.
Example: 'CovData', covdata

Output Arguments
filename — The name of the HTML file for displaying the Web view
character vector or string

Reports the name of the HTML file for displaying the Web view. Exporting a Web view
creates the supporting files, in a folder.

Tips
A Web view is an interactive rendition of a model that you can view in a Web browser. You
can navigate a Web view hierarchically to examine specific subsystems and to see
properties of blocks and signals.

You can use Web views to share models with people who do not have Simulink installed.

Web views require a Web browser that supports Scalable Vector Graphics (SVG).

See Also
slwebview_req

Introduced in R2015a

 slwebview_cov

1-119

tableinfo
Retrieve lookup table coverage information from cvdata object

Syntax
coverage = tableinfo(cvdo, object)
coverage = tableinfo(cvdo, object, ignore_descendants)
[coverage, exeCounts] = tableinfo(cvdo, object)
[coverage, exeCounts, brkEquality] = tableinfo(cvdo, object)

Description
coverage = tableinfo(cvdo, object) returns lookup table coverage results from
the cvdata object cvdo for the model component object.

coverage = tableinfo(cvdo, object, ignore_descendants) returns lookup
table coverage results for object, depending on the value of ignore_descendants.

[coverage, exeCounts] = tableinfo(cvdo, object) returns lookup table
coverage results and the execution count for each interpolation/extrapolation interval in
the lookup table block object.

[coverage, exeCounts, brkEquality] = tableinfo(cvdo, object) returns
lookup table coverage results, the execution count for each interpolation/extrapolation
interval, and the execution counts for breakpoint equality.

Input Arguments
cvdo

cvdata object

ignore_descendants

Logical value specifying whether to ignore the coverage of descendant objects

1 Functions — Alphabetical List

1-120

1 — Ignore coverage of descendant objects
0 — Collect coverage for descendant objects

object

Full path or handle to a lookup table block or a model containing a lookup table block.

Output Arguments
brkEquality

A cell array containing vectors that identify the number of times during simulation that
the lookup table block input was equivalent to a breakpoint value. Each vector represents
the breakpoints along a different lookup table dimension.

coverage

The value of coverage is a two-element vector of form [covered_intervals
total_intervals], the elements of which are:

covered_intervals Number of interpolation/extrapolation
intervals satisfied for object

total_intervals Total number of interpolation/extrapolation
intervals for object

coverage is empty if cvdo does not contain lookup table coverage results for object.

exeCounts

An array having the same dimensionality as the lookup table block; its size has been
extended to allow for the lookup table extrapolation intervals.

Examples
Collect lookup table coverage for the slvnvdemo_cv_small_controller model and
determine the percentage of interpolation/extrapolation intervals coverage collected for
the Gain Table block in the Gain subsystem:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)

 tableinfo

1-121

%Create test spec object
testObj = cvtest(mdl)
%Enable lookup table coverage
testObj.settings.tableExec = 1;
%Simulate the model
data = cvsim(testObj)
blk_handle = get_param([mdl, '/Gain/Gain Table'], 'Handle');
%Retrieve l/u table coverage
cov = tableinfo(data, blk_handle)
%Percent MCDC outcomes covered
percent_cov = 100 * cov(1) / cov(2)

Alternatives
Use the coverage settings to collect lookup table coverage for a model:

1 Open the model.
2 In the Model Editor, select Analysis > Coverage > Settings.
3 On the Coverage pane of the Configuration Parameters dialog box, select Enable

coverage analysis.
4 Under Coverage metrics, select Lookup Table.
5 On the Coverage > Results pane, specify the output you need.
6 Click OK to close the Configuration Parameters dialog box and save your changes.
7 Simulate the model and review the results.

See Also
complexityinfo | conditioninfo | cvsim | decisioninfo | getCoverageInfo |
mcdcinfo | overflowsaturationinfo | sigrangeinfo | sigsizeinfo

Topics
“Lookup Table Coverage”

Introduced in R2006b

1 Functions — Alphabetical List

1-122

name property
Class: cv.cvdatagroup
Package: cv

cv.cvdatagroup object name

Values
name

Description
The name property specifies the name of the cv.cvdatagroup object.

Examples
cvdg = cvsim(topModelName);
cvdg.name = 'My_Data_Group';

 name property

1-123

slcovmex
Build coverage-compatible MEX-function from C/C++ code

Syntax
slcovmex(sourceFile1,...,sourceFileN)
slcovmex(sourceFile1,...,sourceFileN,-sldv)
slcovmex(sourceFile1,...,sourceFileN,Name,Value)
slcovmex(argumentSet1,...,argumentSetN)

Description
slcovmex(sourceFile1,...,sourceFileN) compiles level 2 C/C++ MEX S-Function
to work with coverage.

slcovmex(sourceFile1,...,sourceFileN,-sldv) compiles level 2 C/C++ MEX S-
Function to work with coverage, and with support enabled for Simulink Design Verifier.

slcovmex(sourceFile1,...,sourceFileN,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

slcovmex(argumentSet1,...,argumentSetN) combines several mex function calls,
each with one set of arguments.

Input Arguments
sourceFile1,...,sourceFileN — One or more file names
character vectors or strings

Comma-separated source file names with each name specified as a character vector or
string.

If the files are not in the current folder, the file names must include the full path or
relative path. Use pwd to find the current folder and cd to change the current folder.

1 Functions — Alphabetical List

1-124

Example: 'file1.c', 'file1.c','file2.c'

argumentSet1,...,argumentSetN — One or more sets of mex arguments
Cell arrays of character vectors or strings

Comma-separated mex argument sets, with each set specified as a cell array.

If you invoke mex multiple times, you can invoke slcovmex once and pass the arguments
for each mex invocation as a cell array of character vectors.

For example, if you use the following sequence of mex commands:

 mex -c file1.c
 mex -c file2.c
 mex file1.o file2.o -output sfcnOutput

You can replace the sequence with one slcovmex invocation:

slcovmex({'-c','file1.c'},{'-c','file2.c'},{'file1.o','file2.o',
'-output','sfcnOutput'})

Example: {'-c','file1.c'},{'-c','file2.c'},{'file1.o','file2.o','-
output','sfcnOutput'}

-sldv — Option to enable support for Simulink Design Verifier
character vector or string

Option to enable support for your compiled MEX-function in Simulink Design Verifier.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: You can use all the name-value pair arguments that are allowed for the mex
function. In addition, you can use the following options that are specific to model
coverage.

-ifile — File ignored for coverage
character vector or string

 slcovmex

1-125

File name, specified as a character vector or string.
Example: 'myFile.c'

-ifcn — Function ignored for coverage
character vector or string

Function name, specified as a character vector or string.
Example: 'myFunc'

-idir — Folder ignored for coverage
character vector or string

Folder name, specified as a character vector or string.

All files in the folder are ignored for coverage.
Example: 'C:\Libraries\'

See Also

Topics
“Create a Basic C MEX S-Function” (Simulink)
“Templates for C S-Functions” (Simulink)
“Coverage for Custom C/C++ Code in Simulink Models”
“View Coverage Results for Custom C/C++ Code in S-Function Blocks”

Introduced in R2015a

1 Functions — Alphabetical List

1-126

Simulink Coverage Settings

2

Coverage Pane

In this section...
“Coverage Pane Overview” on page 2-3
“Enable coverage analysis” on page 2-3
“Scope of coverage analysis” on page 2-4
“Select Models” on page 2-5
“Select Subsystem” on page 2-5

2 Simulink Coverage Settings

2-2

In this section...
“Record coverage for MATLAB files” on page 2-7
“Record coverage for C/C++ S-functions” on page 2-7
“Structural coverage level” on page 2-8
“Lookup table” on page 2-9
“Signal range” on page 2-10
“Signal size” on page 2-10
“Objectives and constraints” on page 2-11
“Saturation on integer overflow” on page 2-12
“Relational boundary” on page 2-12
“Relational boundary coverage absolute tolerance” on page 2-13
“Relational boundary coverage relative tolerance” on page 2-13
“Restrict coverage recording interval” on page 2-14
“Coverage interval start time” on page 2-15
“Coverage interval stop time” on page 2-15
“Force block reduction off” on page 2-16
“Treat Simulink logic blocks as short-circuited” on page 2-16
“MCDC mode” on page 2-17
“Warn when unsupported blocks exist in model” on page 2-18
“Coverage filter filename” on page 2-18
“Coverage metric settings” on page 2-19
“Record coverage for this model” on page 2-20
“Record coverage for referenced models” on page 2-21
“Include top model” on page 2-22

Coverage Pane Overview
Specify the Simulink Coverage analysis options.

Enable coverage analysis
Enable coverage analysis. See “Specify Coverage Options”.

 Coverage Pane

2-3

Settings

 On
Coverage data is collected during simulation.

 Off (default)
Coverage data is not collected during simulation.

Command-Line Information
Parameter: CovEnable
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Scope of coverage analysis
Specify whether the analysis must collect coverage data for the entire system, or a
specific referenced model or subsystem.

Settings

Entire System (default)
Coverage data is collected for the top-level model, as well as all supported subsystems
and model references.

Referenced Models
Coverage data is collected for one or more referenced models. To specify the
referenced models, use the parameter “Select Models” on page 2-5. You can also
specify the top-level model itself.

Subsystem
Coverage data is collected for a specific subsystem. To specify a subsystem, use the
parameter “Select Subsystem” on page 2-5.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovScope

2 Simulink Coverage Settings

2-4

Type: Character vector or string
Value: 'EntireSystem' | 'ReferencedModels' | 'Subsystem'
Default: 'EntireSystem'

Select Models
Specify the referenced models for which you want coverage.

Settings

In the Select Models for Coverage Analysis dialog box, select the referenced models for
which you want coverage. You can also select the top-level model. The icon next to the
model name indicates the simulation mode: Normal, SIL, or PIL.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• Specify referenced models for “Scope of coverage analysis” on page 2-4.

Command-Line Information

Note Unlike in the user interface, on the command line, you exclude models from
coverage instead of including them.

Parameter: CovModelRefExcluded
Type: Character vector or string
Value: Comma-separated list of model names, for instance, 'mRefA, mRefB, mRefC'. If
the same model is referenced in two simulation modes, you can distinguish between them
using :, for instance, 'mRefA:normal, mRefA:sil'.
Default: ''

Select Subsystem
Specify the path to the subsystem for which Simulink Coverage collects coverage data.
Specify the path relative to the top model.

 Coverage Pane

2-5

Settings

Select the subsystem for which you want coverage.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Scope of coverage analysis” on page 2-4

Command-Line Information
Parameter: CovPath
Type: Character vector or string
Value: Path to subsystem relative to (and excluding) the top-level Simulink system, for
instance, 'Subsys1/subsys2'
Default: '/'. Coverage data is reported for the entire system.

2 Simulink Coverage Settings

2-6

Record coverage for MATLAB files
Enable coverage for MATLAB functions in external MATLAB files. The functions can be
invoked from MATLAB Function blocks or Stateflow charts in your model. See “Model
Coverage for MATLAB Functions”.

Settings

 On (default)
Coverage data is collected for MATLAB functions in external MATLAB files. The
functions can be called from MATLAB Function blocks or Stateflow charts in the
model.

 Off
Coverage data is not collected for external MATLAB files.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovExternalEMLEnable
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

Record coverage for C/C++ S-functions
Enable coverage for C/C++ code in S-Function blocks in your model. See also “Coverage
for Custom C/C++ Code in Simulink Models”.

Settings

 On (default)
Coverage data is collected for C/C++ code in S-Function blocks in the model.

 Off
Coverage data is not collected for C/C++ code used in the model.

 Coverage Pane

2-7

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Record coverage for this model” on page 2-20 or “Record coverage for referenced

models” on page 2-21 (enter on)

Command-Line Information
Parameter: CovSFcnEnable
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

Structural coverage level
Select the type of coverage data collected. See also “Types of Model Coverage”.

Settings

Decision (default)
The analysis computes decision coverage during simulation

Decision coverage analysis checks blocks that perform an action based on whether an
operation evaluates to true or false. For instance, the Abs block first evaluates if the
input is less than zero and acts accordingly. For each operation that can evaluate to
true or false, the analysis reports what fraction of the outcomes was true during
simulation and what fraction was false.

See “Decision Coverage (DC)”.
Condition/Decision

The analysis computes condition and decision coverage during simulation.

Condition coverage analysis checks blocks that output a logical combination of their
inputs (such as Logical Operator blocks). For each block, the analysis records what
fraction of the inputs was true during simulation and what fraction was false.

See “Condition Coverage (CC)”.

2 Simulink Coverage Settings

2-8

Modified Condition/Decision Coverage (MCDC)
The analysis computes Modified Condition/Decision Coverage (MCDC) during
simulation.

See “Modified Condition/Decision Coverage (MCDC)”.
Block Execution

The analysis checks if each block executes at least once during simulation.

See “Execution Coverage (EC)”.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovMetricStructuralLevel
Type: Character vector or string
Value: 'BlockExecution' | 'ConditionDecision' | 'Decision' | 'MCDC'
Default: 'Decision'

Lookup table
Enable lookup table coverage. See “Types of Model Coverage”.

Settings

 On
Blocks with lookup tables are checked for coverage. A test case achieves full coverage
of a lookup table if it executes each interval of the table at least once.

 Off (default)
Lookup table coverage is not recorded.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovMetricLookupTable

 Coverage Pane

2-9

Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Signal range
Enable signal range coverage. See “Types of Model Coverage”.

Settings

 On
Maximum and minimum signal values are recorded for each block that has an output
signal.

 Off (default)
Signal range information is not recorded.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovMetricSignalRange
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Signal size
Enable signal size coverage. See “Types of Model Coverage”.

Settings

 On
Maximum, minimum and allocated signal size are recorded for each block that has a
variable-size output signal. See “Variable-Size Signal Basics” (Simulink).

 Off (default)
Signal size information is not recorded.

2 Simulink Coverage Settings

2-10

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovMetricSignalSize
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Objectives and constraints
Enable coverage of objectives and constraints specified in Simulink Design Verifier
blocks. See “Types of Model Coverage”.

Settings

 On
Through Simulink Design Verifier blocks, you can specify objectives and constraints in
your model. To check if these objectives are satisfied, you first generate test cases
using these blocks. You can execute these test cases on the original model and record
whether the specified objective was satisfied at least once. To record this coverage,
enable this parameter.

For an example, see “Simulink Design Verifier Coverage”.

 Off (default)
Coverage information is not recorded for Simulink Design Verifier blocks.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovMetricObjectiveConstraint
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

 Coverage Pane

2-11

Saturation on integer overflow
Enable saturation on integer overflow coverage. See “Types of Model Coverage”.

Settings

 On
For certain blocks, such as the Abs block, you can specify that they must saturate on
integer overflow. If you enable this parameter, the number of times these blocks
saturate during simulation is recorded.

 Off (default)
Saturation on integer overflow information is not recorded.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovMetricSaturateOnIntegerOverflow
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Relational boundary
Enable relational boundary coverage. See “Types of Model Coverage”.

Settings

 On
Certain blocks such as the Relational Operator or If block use a relational operation.
If you enable this parameter, the coverage analysis checks if these operations are
executed with equal (integer) or almost equal (floating-point) values.

 Off (default)
Relational boundary coverage information is not recorded.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

2 Simulink Coverage Settings

2-12

Command-Line Information
Parameter: CovMetricRelationalBoundary
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Relational boundary coverage absolute tolerance
Specify the value of absolute tolerance for relational boundary coverage. See “Relational
Boundary Coverage”.

Settings

Enter a floating-point value. See “Floating-Point Numbers” (MATLAB).

Relational boundary coverage checks blocks with relational operations (such as the
Relational Operator block). The analysis checks if the operations are executed with
floating-point operands that differ by at most this value.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Relational boundary” on page 2-12

Command-Line Information
Parameter: CovBoundaryAbsTol
Type: Floating-point number
Value: Absolute tolerance value such as 1e-06
Default: 1e-05

Relational boundary coverage relative tolerance
Specify the value of relative tolerance for relational boundary coverage. See “Relational
Boundary Coverage”.

Settings

Enter a number less than 1.

 Coverage Pane

2-13

Relational boundary coverage checks blocks with relational operations (such as the
Relational Operator block). The analysis checks if the operations are executed with
floating-point operands that differ by at most this fraction of the operands.

For instance, if you enter 0.01, the analysis checks if an operation lhs < = rhs in your
model is executed with operands that differ by at most:

0.01 * max(|lhs|,|rhs|)

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Relational boundary” on page 2-12

Command-Line Information
Parameter: CovBoundaryRelTol
Type: Floating-point number
Value: Relative tolerance value such as 0.001
Default: 0.01

Restrict coverage recording interval
Record coverage only for a specified time interval.

For instance, you might want to restrict model coverage recording if your model has
transient effects early in simulation, or if you need model coverage reported only for a
particular model operation.

Settings

 On
Coverage is recorded only for the time interval that you specify. To specify a time
interval, use these parameters:

• “Coverage interval start time” on page 2-15
• “Coverage interval stop time” on page 2-15

 Off (default)
Coverage is recorded for the entire duration of simulation.

2 Simulink Coverage Settings

2-14

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovUseTimeInterval
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Coverage interval start time
Specify when coverage data collection must begin.

Settings

Enter a time value (in seconds).

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Restrict coverage recording interval” on page 2-14

Command-Line Information
Parameter: CovStartTime
Type: Floating-point number
Value: Time in seconds, for instance, 2
Default: 0

Coverage interval stop time
Specify when coverage data collection must end.

Settings

Enter a time value (in seconds).

Dependency

To enable this parameter, select:

 Coverage Pane

2-15

• “Enable coverage analysis” on page 2-3
• “Restrict coverage recording interval” on page 2-14

Command-Line Information
Parameter: CovStopTime
Type: Floating-point number
Value: Time in seconds, for instance, 4
Default: 0

Force block reduction off
Report coverage for every block in the model that is supported for coverage.

Settings

 On (default)
Coverage is recorded for every supported block in the model. The value of the
configuration parameter Block reduction is ignored. See “Block reduction”
(Simulink).

 Off
Coverage is not recorded for blocks that are effectively removed from the model
because of block reduction. For instance, coverage is not recorded for a block that is
reduced by dead code elimination.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovForceBlockReductionOff
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

Treat Simulink logic blocks as short-circuited
Specify that coverage must take into account the order of operands in blocks that perform
a logical operation, for instance, Logical operator blocks.

2 Simulink Coverage Settings

2-16

For instance, if the order of the two inputs to a Logical AND block is taken into account,
the second input is redundant when the first input is false. Therefore, for cases where the
first input is false, the paths that lead to the second input are not considered for
coverage.

Settings

 On
Coverage analysis does not consider the input to a logical operation that is rendered
redundant by another input.

 Off (default)
Coverage analysis considers all inputs to a logical operation.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovLogicBlockShortCircuit
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

MCDC mode
Specify the definition of Modified Condition/Decision Coverage (MCDC) to use during
coverage analysis. See “Modified Condition and Decision Coverage (MCDC) Definitions in
Simulink Coverage”.

Settings

Masking
Use masking MCDC analysis. To establish the independence of inputs, masking MCDC
analysis does not require that all other inputs be strictly held constant while one input
is varied. Therefore, masking MCDC analysis allows you to satisfy greater number of
objectives in a given simulation.

UniqueCause
Use unique-cause MCDC analysis.

 Coverage Pane

2-17

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• Specify Modified Condition/Decision Coverage (MCDC) for “Structural coverage level”

on page 2-8.

Command-Line Information
Parameter: CovMcdcMode
Type: Character vector or string
Value: 'Masking'|'UniqueCause'
Default: 'Masking'

Warn when unsupported blocks exist in model
Warn when unsupported blocks exist in model.

Settings

 On (default)
Provide a warning when blocks in the model are not supported for coverage analysis.

 Off
Do not provide a warning for unsupported blocks.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovUnsupportedBlockWarning
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

Coverage filter filename
Specify a filter file to exclude certain model objects from coverage analysis during
simulation.

2 Simulink Coverage Settings

2-18

You can use a command-line API to create filtering rules for blocks. Selection criteria for
filtering includes filtering by individual block ID, filtering for all blocks of the same type,
filtering certain decisions, conditions, and outcomes of a block, and more. You can also
filter S-Function C++ code by code coverage outcome.

For an example of filtering, see:

• User interface: “Create, Edit, and View Coverage Filter Rules”.
• Command line: R2017b release notes for Simulink Coverage.

Settings

Enter full path to .cvf file with filter rules.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovFilter
Type: Character vector or string
Value: Full path to .cvf file
Default:

Coverage metric settings
Specify the type of coverage metric to be recorded. See also “Types of Model Coverage”.

Settings

Enter a sequence of letters that describe the coverage metric types. For instance, the
sequence dc indicates that the decision and condition coverage must be recorded.

The coverage metric types are:

• d: Decision coverage
• c: Condition coverage
• m: MCDC coverage
• t: Lookup table coverage
• r: Signal range coverage

 Coverage Pane

2-19

• o: Coverage for Simulink Design Verifier blocks
• b: Relational boundary coverage
• r: Signal range coverage

Additionally, you can use these letters. The letters correspond to other parameters.

• s: “Treat Simulink logic blocks as short-circuited” on page 2-16
• w: “Warn when unsupported blocks exist in model” on page 2-18
• e: Same result as disabling “Display coverage results using model coloring” on page 2-

25

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• One of these: “Record coverage for this model” on page 2-20, “Record coverage for

referenced models” on page 2-21 (enter on) or “Record coverage for MATLAB files”
on page 2-7

Command-Line Information
Parameter: CovMetricSettings
Value: Character vector or string where each character signifies a coverage metric. For
instance, 'dc' specifies decision and condition coverage.
Default: 'dwe'

Record coverage for this model
Record model coverage data during simulation.

Note This parameter represents a deprecated workflow. Instead use these parameters:

• To enable coverage, use “Enable coverage analysis” on page 2-3.
• To perform coverage analysis for the entire model, use “Scope of coverage analysis”

on page 2-4.

2 Simulink Coverage Settings

2-20

Settings

 On (default)
Simulink collects model coverage data during simulation.

 Off
Model coverage data is not collected or reported.

Command-Line Information
Parameter: RecordCoverage
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

Record coverage for referenced models
Record coverage data for referenced models during simulation.

Note This parameter represents a deprecated workflow. Instead use these parameters:

• To enable coverage, use “Enable coverage analysis” on page 2-3.
• To perform coverage analysis for referenced models, use “Scope of coverage analysis”

on page 2-4.
• To specify the referenced models, use “Select Models” on page 2-5.

Settings

Enter one of these:

• on: Coverage data is collected for all referenced models.
• off: Coverage data is not collected for referenced models.
• filtered: Coverage data is collected for all referenced models except those excluded

using the parameter “Select Models” on page 2-5.

Command-Line Information
Parameter: CovModelRefEnable

 Coverage Pane

2-21

Type: Character vector or string
Value: 'on'|'off'|'filtered'
Default: 'off'

Include top model
Record coverage for the top-level model in addition to referenced models.

Note This parameter represents a deprecated workflow. Instead use these parameters:

• To enable coverage, use “Enable coverage analysis” on page 2-3.
• To perform coverage analysis for referenced models, use “Scope of coverage analysis”

on page 2-4.
• To include or exclude the top-level model, use “Select Models” on page 2-5.

Settings

 On (default)
Coverage data is collected for the top-level model.

 Off
Coverage data is not collected for the top-level model.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• Specify referenced model for “Scope of coverage analysis” on page 2-4.

Command-Line Information
Parameter: CovIncludeTopModel
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

2 Simulink Coverage Settings

2-22

Coverage Pane: Results

In this section...
“Coverage Results Pane Overview” on page 2-24
“Show Results Explorer” on page 2-24
“Display coverage results using model coloring” on page 2-25
“Generate report automatically after analysis” on page 2-26
“Save last run in workspace variable” on page 2-27
“Last coverage run variable name” on page 2-27
“Increment variable name with each simulation” on page 2-28
“Autosave data file name” on page 2-29
“Output directory” on page 2-29

 Coverage Pane: Results

2-23

In this section...
“Coverage report options” on page 2-30
“Additional data to include in coverage report” on page 2-32
“Update coverage results on pause” on page 2-32
“Save output data” on page 2-33
“Enable cumulative data collection” on page 2-33
“Include cumulative data in coverage report” on page 2-34
“Save cumulative coverage results in workspace variable” on page 2-35
“Cumulative coverage variable name” on page 2-36

Coverage Results Pane Overview
Specify Simulink Coverage coverage results options.

Show Results Explorer
Show Coverage Results Explorer after simulation. When you run a simulation, the
Coverage Results Explorer opens to show the most recent coverage run.

Settings

 On (default)
When you run a simulation, the Coverage Results Explorer opens to show the most
recent coverage run. See “Access, Manage, and Accumulate Coverage Results”

 Off
The Coverage Results Explorer does not open after simulation.

You can open it later. Select Analysis > Coverage > Open Results Explorer.

Note If you enable the Simulink Toolstrip tech preview and you use the toolbar buttons
to simulate a model with coverage enabled, the Results Explorer does not appear after a
simulation. You can access the Results Explorer from the Simulink Coverage contextual
tabs, which appear when you open the Coverage Analyzer app, under Verification,
Validation, and Test.

2 Simulink Coverage Settings

2-24

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovShowResultsExplorer
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

Display coverage results using model coloring
Color blocks in the model based on coverage received during simulation.

Settings

 On
Coverage results are displayed on the model. If a model receives incomplete coverage
during simulation, it is colored light red. If it receives complete coverage, it is green.
See also “View Coverage Results in a Model”.

 Off (default)
Coverage results are not displayed on the model.

You can enable coloring based on coverage later. Select Analysis > Coverage >
Open Results Explorer. In the Coverage Results Explorer, select a coverage result
from the data repository. Select Highlight model with coverage results below the
coverage results summary.

Note If you use the toolbar buttons to simulate a model with coverage enabled, this
setting is not honored and the model coloring for coverage results always appears after
each simulation. You can click Highlight model with coverage results in the Results
Explorer to enable or disable model coverage highlighting. You access the Results
Explorer by selecting Analysis > Coverage > Open Results Explorer. For more
information, see “Accessing Coverage Data from the Results Explorer”.

If you enabled the Simulink toolstrip tech preview, you enable an disable model
highlighting from the Simulink Coverage contextual tabs, which appear when you open
the Coverage Analyzer app, under Verification, Validation, and Test.

 Coverage Pane: Results

2-25

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovHighlightResults
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Generate report automatically after analysis
Create an HTML report containing coverage results after simulation.

Settings

 On
An HTML report containing coverage results opens after simulation. Specify the
report location using the parameter “Output directory”.

 Off (default)
The HTML report is not generated after simulation.

You can generate the report later. Select Analysis > Coverage > Open Results
Explorer. In the Coverage Results Explorer, select a coverage result from the data
repository. Select Generate report below the coverage results summary.

Note If you enable the Simulink Toolstrip tech preview and you use the toolbar buttons
to simulate a model with coverage enabled, the HTML report does not appear after a
simulation. You access the HTML report from the Simulink Coverage contextual tabs,
which appear when you open the Coverage Analyzer app, under Verification,
Validation, and Test.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

2 Simulink Coverage Settings

2-26

Command-Line Information
Parameter: CovHtmlReporting
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Save last run in workspace variable
Save the coverage data from simulation in a MATLAB variable.

You can retrieve coverage information from this variable later. For instance, to retrieve
decision coverage information, use the decisioninfo function. For the full list of
functions, see “Automate Coverage Workflows”.

Settings

 On
Coverage data is stored in a cvdata object in the MATLAB workspace. Specify the
object name using the parameter “Last coverage run variable name” on page 2-27.
Choose to create a new object for each simulation using the parameter “Increment
variable name with each simulation” on page 2-28.

 Off (default)
Coverage data is not stored in a MATLAB variable.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovSaveSingleToWorkspaceVar
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Last coverage run variable name
Specify a name for the cvdata object that contains coverage results from the last
simulation.

 Coverage Pane: Results

2-27

Settings

Enter a name, for instance, coverageData.

If you want a new variable to store coverage results for each simulation, use the
parameter “Increment variable name with each simulation” on page 2-28. The new
variable name is created by appending a counter value to the original name, for instance,
coverageData1, coverageData2, and so on.

The default variable name is covdata.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Save last run in workspace variable” on page 2-27

Command-Line Information
Parameter: CovSaveName
Type: Character vector or string
Value: Name to be given to cvdata object
Default: 'covdata'

Increment variable name with each simulation
Create a new variable to store coverage results for each new simulation.

Settings

 On
A new cvdata object stores coverage results for each simulation.

The new variable name is created by appending a counter value to the original
variable name from the first simulation. Specify the original variable name using the
parameter “Last coverage run variable name” on page 2-27.

 Off (default)
Each new simulation overwrites the coverage results from the previous simulation. A
single cvdata object stores the coverage results from the most recent simulation.

2 Simulink Coverage Settings

2-28

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Save last run in workspace variable” on page 2-27

Command-Line Information
Parameter: CovNameIncrementing
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Autosave data file name
Specify name of .cvt file to which coverage data is automatically saved.

Settings

Enter file name. The default name is $ModelName$_cvdata, where $ModelName$ is the
model name.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Save output data” on page 2-33

Command-Line Information
Parameter: CovDataFileName
Type: Character vector or string
Value: Name to be given to .cvt file
Default: '$ModelName$_cvdata'

Output directory
Specify a folder in which coverage output files are saved.

 Coverage Pane: Results

2-29

Settings

Enter path to folder. You can enter the absolute path or path relative to the current
working folder.

By default, the files are saved in a subfolder slcov_output/$ModelName$ relative to
the current working folder. Here $ModelName$ is the model name.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovOutputDir
Type: Character vector or string
Value: Path to folder
Default: 'slcov_output/$ModelName$'

Coverage report options
Specify the formatting of certain aspects of the coverage report (HTML).

Note For an easier way to specify report formatting, see Report from Results Explorer.

Settings

Enter a space-separated list of flags. The available flags are:

• '-sRT=0' — Do not show report
• '-sVT=1' — Open a web view of the report in a browser. See also “Export Model

Coverage Web View”.
• '-aTS=1' — Show each test in the model summary.
• '-bRG=1' — Show bar graphs in the model summary.

2 Simulink Coverage Settings

2-30

• '-bTC=1' — Use two color bar graphs (red, blue).
• '-hTR=1' — Display hit/count ratio in the model summary.

• '-nFC=0' — Do not report fully covered model objects
• '-scm=1' — Include cyclomatic complexity numbers in summary. See also

“Cyclomatic Complexity”.
• '-bcm=1' — Include cyclomatic complexity numbers in block details.
• '-xEv=0' — Filter Stateflow events from report.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Generate report automatically after analysis” on page 2-26

Command-Line Information
Parameter: CovHTMLOptions
Type: Character vector or string
Value:
Default:

 Coverage Pane: Results

2-31

Additional data to include in coverage report
Include additional model coverage data from cvdata objects in the model coverage
report.

Settings

Enter the name of a cvdata object associated with a simulation.

You get a cvdata object when you record coverage and save coverage data in a
workspace variable. See:

• “Last coverage run variable name” on page 2-27
• “Cumulative coverage variable name” on page 2-36

You also get a cvdata object if you run simulation using the cvsim function. See cvsim.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Generate report automatically after analysis” on page 2-26

Command-Line Information
Parameter: CovCompData
Type: Character vector or string
Value: Name of cvdata object.
Default: No default

Update coverage results on pause
Update coverage report when you pause during simulation. The report is updated with
coverage results up to the current pause or stop time.

Settings

 On (default)
Coverage report is updated when you pause simulation.

2 Simulink Coverage Settings

2-32

 Off
Coverage report is not updated when you pause simulation.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovReportOnPause
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

Save output data
Save coverage data results to a file.

Settings

 On (default)
Coverage data results are saved to a file. Specify the file name using the parameter
“Autosave data file name” on page 2-29.

 Off
Coverage data results are not saved to a file.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovSaveOutputData
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

Enable cumulative data collection
Collect model coverage results from successive simulations. See also “Cumulative
Coverage Data”.

 Coverage Pane: Results

2-33

Note For an easier way to accumulate coverage data from multiple simulations, see
“Accumulating Coverage Data from the Results Explorer”.

Settings

 On (default)
Model coverage data from successive simulations are collected together.

To show the cumulative data in one report, use the parameter “Include cumulative
data in coverage report” on page 2-34. To save the data in one workspace variable,
use the parameters “Save cumulative coverage results in workspace variable” on
page 2-35 and “Cumulative coverage variable name” on page 2-36.

 Off
Model coverage data is retained for the most recent simulation only.

Dependency

To enable this parameter, select “Enable coverage analysis” on page 2-3.

Command-Line Information
Parameter: CovEnableCumulative
Type: Character vector or string
Value: 'on'|'off'
Default: 'on'

Include cumulative data in coverage report
Show model coverage results from successive simulations in a single HTML report.

Note For an easier way to accumulate coverage data from multiple simulations, see
“Accumulating Coverage Data from the Results Explorer”.

Settings

 On
The HTML report shows model coverage data from successive simulations.

2 Simulink Coverage Settings

2-34

 Off (default)
The HTML report shows model coverage data from the most recent simulation.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Generate report automatically after analysis” on page 2-26
• “Enable cumulative data collection” on page 2-33

Command-Line Information
Parameter: CovCumulativeReport
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Save cumulative coverage results in workspace variable
Save model coverage data from successive simulations in a single cvdata object in the
MATLAB workspace.

You can retrieve coverage information from this variable later. For instance, to retrieve
decision coverage information, use the decisioninfo function. For the full list of
functions, see “Automate Coverage Workflows”.

Note For an easier way to accumulate coverage data from multiple simulations, see
“Accumulating Coverage Data from the Results Explorer”.

Settings

 On
A single cvdata object stores model coverage data from successive simulations. See
“Cumulative Coverage Data”.

Specify the variable name using the parameter “Cumulative coverage variable name”
on page 2-36.

 Coverage Pane: Results

2-35

 Off (default)
The cvdata object stores model coverage data from the most recent simulation.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Enable cumulative data collection” on page 2-33

Command-Line Information
Parameter: CovSaveCumulativeToWorkspaceVar
Type: Character vector or string
Value: 'on'|'off'
Default: 'off'

Cumulative coverage variable name
Specify the name of the cvdata object that saves coverage data from successive
simulations.

Note For an easier way to accumulate coverage data from multiple simulations, see
“Accumulating Coverage Data from the Results Explorer”.

Settings

Enter variable name, for instance, cumulativeCoverageData.

Dependency

To enable this parameter, select:

• “Enable coverage analysis” on page 2-3
• “Save cumulative coverage results in workspace variable” on page 2-35
• “Enable cumulative data collection” on page 2-33

Command-Line Information
Parameter: CovCumulativeVarName

2 Simulink Coverage Settings

2-36

Type: Character vector or string
Value: Name to be given to cvdata object
Default: 'covCumulativeData'

 Coverage Pane: Results

2-37

Class Reference

3

slcoverage.BlockSelector class
Package: slcoverage

Select blocks for coverage filter

Description
Specify block selection criteria for a filter rule.

Construction
sel = slcoverage.BlockSelector(type,element) specifies the type of model
elements to create the filter rule for and returns an slcoverage.BlockSelector
object.

Input Arguments
type — Block selector type
slcoverage.BlockSelectorType value

Type of model element to select, specified as one of these values:

• slcoverage.BlockSelectorType.BlockInstance — An instance of a block.
• slcoverage.BlockSelectorType.BlockType — All blocks of the specified block

type.
• slcoverage.BlockSelectorType.Chart — A Stateflow chart.
• slcoverage.BlockSelectorType.MaskType — Blocks that use the specified mask

type.
• slcoverage.BlockSelectorType.State — A Stateflow state.
• slcoverage.BlockSelectorType.StateAllContent — Stateflow state and its

contents.
• slcoverage.BlockSelectorType.StateflowFunction — A Stateflow function.

3 Class Reference

3-2

• slcoverage.BlockSelectorType.Subsystem — A subsystem block.
• slcoverage.BlockSelectorType.SubsystemAllContent — A subsystem and its

contents.
• slcoverage.BlockSelectorType.TemporalEvent — A Stateflow temporal event.
• slcoverage.BlockSelectorType.Transition — A Stateflow transition.

Example: slcoverage.BlockSelectorType.Transition

element — Model element to select
property name | handle | Simulink ID

Model element to select, specified as a property name of the element, its handle, or its
Simulink identifier. Use a handle or ID for selector types that select an instance. Use a
property name, such as the value of a block's 'BlockType' property, to select multiple
model elements.
Example: 'sldemo_lct_bus:18', 'RelationalOperator'

Outputs
sel — Selector object
slcoverage.BlockSelector object | array of slcoverage.BlockSelector objects

Selector object, returned as an slcoverage.BlockSelector object or array of
slcoverage.BlockSelector objects.

Properties
ConstructorCode — Code used to create this selector object
character vector

This property is read-only.

Code used to create this selector object, returned as a character vector.

Description — Description of the selector
character vector

This property is read-only.

 slcoverage.BlockSelector class

3-3

Description of the selector, returned as a character vector. Simulink Coverage creates the
description based on the selector.

Id — Element identifier
Simulink ID (default) | property | handle

This property is read-only.

Identifier of the model element, returned as character vector of the Simulink ID, model
element property, or handle. This property is empty for the slcoverage.CodeSelector
class.

Type — Block selector type
slcoverage.BlockSelectorType value

This property is read-only.

Selector type, returned as one of these slcoverage.BlockSelectorType values:

• BlockInstance
• BlockType
• Chart
• MaskType
• State
• StateAllContent
• StateflowFunction
• Subsystem
• SubsystemAllContent
• TemporalEvent
• Transition

Methods

allSelectors Selectors for model or code element

3 Class Reference

3-4

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples

Add Block Selector Rules to a Filter

Select multiple blocks to add a rule for and an instance of a block to add a rule for. The
resulting filter has two rules. You can simulate your model for code coverage using the
filter to see the effect.

Open the model. Specify coverage settings and turn on coverage recording.

modelName = 'sldemo_lct_bus';
open_system(modelName);
set_param(modelName,'CovMetricSettings','dcme','RecordCoverage','on');

Select blocks that have the same block type as the upper GE input block to add a filter
rule for.
type = get_param('sldemo_lct_bus/slCounter/upper GE input','BlockType');
bl = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockType,type);

Create a filter object, create a rule based on the selector, and add the rule to the filter.
filt = slcoverage.Filter;
rule = slcoverage.FilterRule(bl,'Tested elsewhere',slcoverage.FilterMode.Exclude);
filt.addRule(rule);

Select a block instance and add a rule for the block instance to the filter. This rule uses
the default filter mode of Justify.
id = Simulink.ID.getSID('sldemo_lct_bus/slCounter/And');
bl = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockInstance,id);
rule = slcoverage.FilterRule(bl,'Edge case');
filt.addRule(rule);

Save the filter as blfilter. Simulate the model for code coverage. Add the filter file as
the value to the filter property of the resulting cvdata object. Then generate the
coverage report.

filt.save('blfilter');
csim = cvsim(modelName);

 slcoverage.BlockSelector class

3-5

csim.filter = 'blfilter';
cvhtml('cov',csim);

Examine the HTML report to see information about the blocks that you added rules for.

See Also
cv.cvdatagroup | getSimulinkBlockHandle | slcoverage.Filter |
slcoverage.FilterRule | slcoverage.MetricSelector |
slcoverage.SFcnSelector

Topics
“Top-Level Model Coverage Report”
“Get a Simulink Identifier” (Simulink)
“Create, Edit, and View Coverage Filter Rules”

Introduced in R2017b

3 Class Reference

3-6

slcoverage.CodeSelector class
Package: slcoverage

Select custom C/C++ code for coverage filter

Description
Specify custom C/C++ code selection criteria for a filter rule.

Construction
sel = slcoverage.CodeSelector(type,file) creates the selector based on the C
or C++ file.

sel = slcoverage.CodeSelector(type,file,function) creates the selector
based on the C or C++ function in the file.

sel = slcoverage.CodeSelector(type,file,function,expression,index)
creates the selector based on the index of the decision or condition expression.

Input Arguments
type — Code selector type
slcoverage.CodeSelectorType value

Type of custom C/C++ code to select, as one of these values:

• slcoverage.CodeSelectorType.File — Custom C/C++ code file name.
• slcoverage.CodeSelectorType.Function — Custom C/C++ code function name.
• slcoverage.CodeSelectorType.Decision — A custom C/C++ code decision.
• slcoverage.CodeSelectorType.Condition — A custom C/C++ code condition.

Example: slcoverage.CodeSelectorType.Function

 slcoverage.CodeSelector class

3-7

file — C or C++ file to select
character vector or string

C or C++ file to select, specified as a character vector or string.
Example: 'myfile.c'

function — C or C++ function to select
character vector or string

C or C++ function to select, specified as a character vector or string.
Example: 'counterbusFcn'

expression — Decision expression to select
character vector or string

Decision or condition expression to select, specified as a character vector or string.
Example: 'inputGElower'

index — Matrix position of expression to select
integer

Matrix position of expression to select, specified as an integer.
Example: 2

Outputs
sel — Selector object
slcoverage.CodeSelector object | array of slcoverage.CodeSelector objects

Selector object, returned as an slcoverage.CodeSelector object or array of
slcoverage.CodeSelector objects.

Properties
ConstructorCode — Code used to create this selector object
character vector

This property is read-only.

3 Class Reference

3-8

Code used to create this selector object, returned as a character vector.

Description — Description of the selector
character vector

This property is read-only.

Description of the selector, returned as a character vector. Simulink Coverage creates the
description based on the selector.

Id — Element identifier
Simulink ID (default) | property | handle

This property is read-only.

Identifier of the model element, returned as character vector of the Simulink ID, model
element property, or handle. This property is empty for the slcoverage.CodeSelector
class.

Type — Code selector type
slcoverage.CodeSelectorType value

This property is read-only.

Selector type, returned as one of these slcoverage.CodeSelectorType values:

• File
• Function
• Decision
• Condition

Methods
allSelectors Selectors for model or code element

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

 slcoverage.CodeSelector class

3-9

Examples

Add Code Selector Rules to a Filter

Select custom C/C++ code to add a rule for and select a code construct to add a rule for.
The resulting filter has one rule. You can simulate your model for coverage by using the
filter to see the effect.

Open the model. Specify coverage settings and turn on coverage recording.

modelName = 'slexCCallerExample';
open_system(modelName);
set_param(modelName, 'SimAnalyzeCustomCode', 'on', 'CovMetricSettings','dcme', 'RecordCoverage','on');

Add a filter rule for the custom C function times2.

sel = slcoverage.CodeSelector(slcoverage.CodeSelectorType.Function, 'my_func.c', 'times2');

Create a filter object, create a rule based on the selector, and add the rule to the filter.

filt = slcoverage.Filter;
rule = slcoverage.FilterRule(sel, 'Tested elsewhere', slcoverage.FilterMode.Exclude);
filt.addRule(rule);

Save the filter as codefilter. Simulate the model for code coverage. Add the filter file
to the filter property of the resulting cvdata object.

filt.save('codefilter');
csim = cvsim(modelName);
csim.get('my_func.c').filter = 'codefilter';

Generate a coverage report.

cvhtml('cov',csim);

Review the report. Click the my_func.c Custom Code File(s) link and find the filter rule
that you added under Objects Filtered from Coverage Analysis.

3 Class Reference

3-10

See Also
cv.cvdatagroup | slcoverage.Filter | slcoverage.FilterRule |
slcoverage.MetricSelector | slcoverage.SFcnSelector

Topics
“Top-Level Model Coverage Report”
“Create, Edit, and View Coverage Filter Rules”

Introduced in R2018b

 slcoverage.CodeSelector class

3-11

slcoverage.Filter class
Package: slcoverage

Coverage filter set

Description
Create a coverage filter object to add filter rules to.

Construction
filt = slcoverage.Filter() creates an slcoverage.Filter object.

filt = slcoverage.Filter(filterFile) adds the filter rules in filterFile to the
filter.

Input Arguments
filterFile — Filter file
path name

Filter file (.cvf file), specified as a character vector of the path name to the file. You do
not need to include the extension.
Example: 'myfilt', 'filters/myfilt'

Methods

addRule Add coverage filtering rule to filter
removeRule Remove rule from filter rule set
rules Rules for filter

3 Class Reference

3-12

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples

Create and Use a Filter Object

Create a filter object and add a rule to it. In this example, you add a rule to exclude some
blocks from coverage testing.

Open the model. Specify coverage settings and turn on coverage recording.

modelName = 'sldemo_lct_bus';
open_system(modelName);
set_param(modelName,'CovMetricSettings','dcme','RecordCoverage','on');

Select blocks with block type 'RelationalOperator' to add a filter rule for.
bl = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockType,'RelationalOperator');

Create a filter object, create a rule, and add the rule to the filter.
filt = slcoverage.Filter;
rule = slcoverage.FilterRule(bl,'Tested elsewhere',slcoverage.FilterMode.Exclude);
filt.addRule(rule);

After you create a filter and add one or more rules to it, save the filter to a file. Simulate
the model for code coverage. Add the filter file as the value to the filter property of the
resulting cvdata object.

filt.save('blfilter');
csim = cvsim(modelName);
csim.filter = 'blfilter';
cvhtml('cov',csim);

Examine the HTML report and notice the rules that were added for the blocks. The
coverage report shows the excluded blocks and the rationale.

 slcoverage.Filter class

3-13

Add Rule to a Filter File

This example assumes that you have an existing filter file myfilt.cvf that you want to
add a rule to. Create a filter object that uses that file. Add a rule to the filter object and
then save the file again.
filt = slcoverage.Filter('myfilt');
bl = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockInstance,'sldemo_lct_bus:23');

rule = slcoverage.FilterRule(bl,'Edge case');
filt.addRule(rule);
filt.save('myfilt')

See Also
slcoverage.BlockSelector | slcoverage.FilterRule |
slcoverage.MetricSelector | slcoverage.SFcnSelector

Topics
“Create, Edit, and View Coverage Filter Rules”

Introduced in R2017b

3 Class Reference

3-14

slcoverage.FilterRule class
Package: slcoverage

Create coverage filtering rule

Description
Create a coverage filtering rule that includes the selector and the rationale for filtering.

Construction
rule = slcoverage.FilterRule(selector,rationale) creates the filter rule
object rule using the specified selector and rationale text.

rule = slcoverage.FilterRule(selector,rationale,mode) specifies whether
the filter mode for this rule is justify or exclude. You can use only justify (the default) with
metric selectors.

Input Arguments
selector — Selector for this rule
slcoverage.BlockSelector object | slcoverage.MetricSelector object |
slcoverage.SFcnSelector object

Selector that determines the objects that this rule applies to, specified as an
slcoverage.BlockSelector object, slcoverage.MetricSelector object, or
slcoverage.SFcnSelector object.

rationale — Reason for adding the rule
character vector or string

Reason for adding the rule, specified as a character vector or string.
Example: 'value is never less than 0'

mode — Filter mode
slcoverage.FilterMode.Justify (default) | slcoverage.FilterMode.Exclude

 slcoverage.FilterRule class

3-15

Filter mode for this rule, specified as slcoverage.FilterMode.Justify or
slcoverage.FilterMode.Exclude.

Properties
Mode — Filter mode
Justify (default) | Exclude

This property is read-only.

Filter mode that was specified for this rule, returned as Justify or Exclude.

Rationale — Rationale text specified for this rule
character vector or string

This property is read-only.

Rationale text specified for this rule, returned as a character vector.

Selector — Selector object for this rule
slcoverage.BlockSelector object | slcoverage.MetricSelector object |
slcoverage.SFcnSelector object

This property is read-only.

Selector object for this rule, returned as a slcoverage.BlockSelector object,
slcoverage.SFcnSelector object, or slcoverage.SFcnSelector object.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples

3 Class Reference

3-16

Create Rule That Uses a Block Selector

Create a block selector object and a rule for it. Then add the rule to a filter.

Open the model. Specify coverage settings and turn on coverage recording.

modelName = 'sldemo_lct_bus';
open_system(modelName);
set_param(modelName,'CovMetricSettings','dcme','RecordCoverage','on');

Select blocks with block type 'RelationalOperator' to add a filter rule for.
bl = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockType,'RelationalOperator');

Create a filter object, create a rule, and add the rule to the filter. This rule excludes the
selection from coverage analysis.
filt = slcoverage.Filter;
rule = slcoverage.FilterRule(bl,'Tested elsewhere',slcoverage.FilterMode.Exclude);
filt.addRule(rule);

See Also
slcoverage.BlockSelector | slcoverage.Filter |
slcoverage.MetricSelector | slcoverage.SFcnSelector

Topics
“Coverage Filter Rules and Files”
“Create, Edit, and View Coverage Filter Rules”

Introduced in R2017b

 slcoverage.FilterRule class

3-17

slcoverage.MetricSelector class
Package: slcoverage

Select metric criterion for coverage filter

Description
Specify metric selection criteria for a filter rule.

Construction
sel = slcoverage.MetricSelector(type,element,objIndex,
outIndex)specifies the model element and the block metrics to create the rule for.
Specify whether the type of selector is a condition or decision outcome. Then select the
object and outcome index combination to specify the metric that you want to write the
filter rule for.

You can create only a justify rule for a metric selector. You cannot create an exclude rule.

For more information on the condition and decision coverage tables produced in the
report, see “Top-Level Model Coverage Report”.

Input Arguments
type — Metric selector type
slcoverage.MetricSelectorType.ConditionOutcome |
slcoverage.MetricSelectorType.DecisionOutcome |
slcoverage.MetricSelectorType.RelationalBoundaryOutcome |
slcoverage.MetricSelectorType.SaturationOverflowOutcome

Metric selector type, specified as:

• slcoverage.MetricSelectorType.ConditionOutcome selects outcome metrics
related to block inputs.

• slcoverage.MetricSelectorType.DecisionOutcome selects outcome metrics
related to block outputs.

3 Class Reference

3-18

• slcoverage.MetricSelectorType.RelationalBoundaryOutcome selects
outcome metrics related to relational boundary outcomes.

• slcoverage.MetricSelectorType.SaturationOverflowOutcome selects
outcome metrics related to saturation on integer overflow outcomes.

element — Model element to select
handle | Simulink ID

Model element to select, specified as a handle or the model element Simulink identifier.
Example: 'sldemo_lct_bus:18'

objIndex — Matrix position of objective
integer

Matrix position of objective to select, specified as an integer that corresponds to the row
of the coverage table.
Example: 1

outIndex — Matrix position of outcome
integer

Matrix position of the outcome to select, specified as an integer that corresponds to the
column of the coverage table.
Example: 2

Properties
ConstructorCode — Code used to create this selector object
character vector

This property is read-only.

Code used to create this selector object, returned as a character vector.

Description — Description of the selector
character vector

This property is read-only.

 slcoverage.MetricSelector class

3-19

Description of the selector, returned as a character vector. Simulink Coverage creates the
description based on the selector.

Id — Element identifier
Simulink ID (default) | handle

This property is read-only.

Identifier of the model element, returned as character vector of the Simulink ID or
handle.

ObjectiveIndex — Matrix position of objective
integer

This property is read-only.

Matrix position of objective for this selector, returned as an integer.

OutcomeIndex — Matrix position of outcome
integer

This property is read-only.

Matrix position of outcome for this selector, returned as an integer.

Type — Metric selector type
ConditionOutcome | DecisionOutcome | RelationalBoundaryOutcome |
SaturationOverflowOutcome

This property is read-only.

Selector type, returned as ConditionOutcome, DecisionOutcome,
RelationalBoundaryOutcome, or SaturationOverflowOutcome.

Outputs
sel — Selector object
slcoverage.MetricSelector object | array of slcoverage.MetricSelector
objects

Selector object, returned as an slcoverage.MetricSelector object or array of
slcoverage.MetricSelector objects.

3 Class Reference

3-20

Methods
allSelectors Selectors for model or code element

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples

Add Matrix Selector Rule to Filter

Select a metric, create a rule for it, and add the rule to a filter. Then you can simulate the
model for code coverage using the filter to see the effect.

In this example, you create a rule to justify the untested condition for the And block.

 slcoverage.MetricSelector class

3-21

Open the model. Specify coverage settings and turn on coverage recording.

modelName = 'sldemo_lct_bus';
open_system(modelName);
set_param(modelName,'CovMetricSettings','dcme','RecordCoverage','on');

Get the identifier for the And block. Create the metric selector for the block. For this
example, filter the second condition (input port 2) False outcome, whose index, then, is
2,2. Use the ConditionOutcome selector type and the index 2,2.
id = Simulink.ID.getSID('sldemo_lct_bus/slCounter/And');
metr = slcoverage.MetricSelector(slcoverage.MetricSelectorType.ConditionOutcome,id,2,2);

Create a filter object and create a rule using the default filter mode of justify. Add the rule
to the filter.
filt = slcoverage.Filter;
rule = slcoverage.FilterRule(metr,'Expected result');
filt.addRule(rule);

Save the filter as metrfilter. Simulate the model for code coverage. Add the filter file
as the value to the filter property of the resulting cvdata object. Then generate the
coverage report.

3 Class Reference

3-22

filt.save('metrfilter');
csim = cvsim(modelName);
csim.filter = 'metrfilter';
cvhtml('cov',csim);

Examine the HTML report and view the condition table for the And block. The report now
shows 100% coverage for the condition and that the untested condition was justified.

See Also
cv.cvdatagroup | getSimulinkBlockHandle | slcoverage.BlockSelector |
slcoverage.Filter | slcoverage.FilterRule | slcoverage.SFcnSelector

Topics
“Top-Level Model Coverage Report”
“Get a Simulink Identifier” (Simulink)
“Create, Edit, and View Coverage Filter Rules”

 slcoverage.MetricSelector class

3-23

Introduced in R2017b

3 Class Reference

3-24

slcoverage.Selector class
Package: slcoverage

Get selectors of all types

Description
Use the slcoverage.Selector class with the allSelectors method to return all
types of the selectors for a block.

Properties
ConstructorCode — Code used to create this selector object
character vector

This property is read-only.

Code used to create this selector object, returned as a character vector.

Description — Description of the selector
character vector

This property is read-only.

Description of the selector, returned as a character vector. Simulink Coverage creates the
description based on the selector.

Id — Element identifier
Simulink ID (default) | handle

This property is read-only.

Identifier of the model element, returned as character vector of the Simulink ID or
handle.

Type — Selector type
selector type value

 slcoverage.Selector class

3-25

This property is read-only.

Selector type, returned as a selector type of the corresponding selector.

Methods
allSelectors Selectors for model or code element

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

Examples
Get All Selectors

Get all the selectors for the block. Then you can add a rule to exclude or justify a selector.
(You can only justify metric selectors.)

Open the model and turn on coverage recording. Get all the selectors for the And block.

modelName = 'sldemo_lct_bus';
open_system(modelName);
set_param(modelName,'CovMetricSettings','dcme','RecordCoverage','on');
id = Simulink.ID.getSID('sldemo_lct_bus/slCounter/And');
sel = slcoverage.Selector.allSelectors(id)

s =

 1×6 heterogeneous Selector (BlockSelector, MetricSelector) array with properties:

 Description
 Type
 Id
 ConstructorCode

The block has six selectors. You can index into each one to see the content. The sixth
selector is the metric selector that you want to justify.

sel(6)

3 Class Reference

3-26

ans =

 MetricSelector with properties:

 ObjectiveIndex: 2
 OutcomeIndex: 2
 Description: 'F outcome of input port 2 in Logic block "And"'
 Type: ConditionOutcome
 Id: 'sldemo_lct_bus:23'
 ConstructorCode: 'slcoverage.MetricSelector(slcoverage.MetricSelectorType.ConditionOutcome,'sldemo_lct_bus:23',2,2)'

Create a justify rule for the selector. Create a filter object and add the rule to it.

rule = slcoverage.FilterRule(sel(6),'Expected result');
filt = slcoverage.Filter;
filt.addRule(rule);

Save and run the filter.

filt.save('metrfilter');
csim = cvsim(modelName);
csim.filter = 'metrfilter';
cvhtml('cov',csim);

See Also
slcoverage.BlockSelector | slcoverage.CodeSelector |
slcoverage.MetricSelector | slcoverage.SFcnSelector

Topics
“Create, Edit, and View Coverage Filter Rules”

Introduced in R2017b

 slcoverage.Selector class

3-27

slcoverage.SFcnSelector class
Package: slcoverage

Select S-function criterion for filtering rule

Description
Specify S-function selection criteria for a filter rule.

Construction
sel = slcoverage.SFcnSelector(type,element) specifies the type of selector to
use for the selected model element.

sel = slcoverage.SFcnSelector(type,element,file) creates the selector based
on the specified C or C++ file.

sel = slcoverage.SFcnSelector(type,element,file,function) creates the
selector based on the specified C or C++ function in the specified file.

sel = slcoverage.SFcnSelector(type,element,file,function,
expression,index) creates the selector based on the specified index of the specified
decision expression.

Input Arguments
type — Type of S-function
slcoverage.SFcnSelectorType value

Type of S-function to select, specified as one of these values:

• slcoverage.SFcnSelectorType.SFcnName selects the specified S-function.
• slcoverage.SFcnSelectorType.SFcnInstanceCppFileName selects the

coverage data in the generated code file for this block. Use with the file argument.

3 Class Reference

3-28

• slcoverage.SFcnSelectorType.SFcnInstanceCppFunction selects an instance
of a C or C++ function. Use with the file and function arguments.

• slcoverage.SFcnSelectorType.SFcnInstanceCppCondition selects a
condition outcome of the specified code. Use with file, function, expression, and
index arguments.

• slcoverage.SFcnSelectorType.SFcnInstanceCppDecision selects a decision
outcome of the specified. Use with file, function, expression, and index
arguments.

element — Model element to select
property name | handle | Simulink ID

Model element to select, specified as a property name of the element, its handle, or its
Simulink identifier. Use a handle or ID for selector types that select an instance. Use a
property name, such as the value of a block's 'BlockType' property, to select multiple
model elements.
Example: 'sldemo_lct_bus:18', 'RelationalOperator'

file — C or C++ file to select
character vector or string

C or C++ file to select, specified as a character vector or string.
Example: 'myfile.c'

function — C or C++ function to select
character vector or string

C or C++ function to select, specified as a character vector or string.
Example: 'counterbusFcn'

expression — Decision expression to select
character vector or string

Decision expression to select, specified as a character vector or string.
Example: 'inputGElower'

index — Matrix position of expression to select
integer

Matrix position of expression to select, specified as an integer.

 slcoverage.SFcnSelector class

3-29

Example: 2

Outputs
sel — Selector object
slcoverage.SFcnSelector object | array of slcoverage.SFcnSelector objects

Selector object, returned as an slcoverage.SFcnSelector object or array of
slcoverage.SFcnSelector objects.

Properties
ConstructorCode — Code used to create this selector object
character vector

This property is read-only.

Code used to create this selector object, returned as a character vector.

Description — Description of the selector
character vector

This property is read-only.

Description of the selector, returned as a character vector. Simulink Coverage creates the
description based on the selector.

Expr — Decision expression for this selector
character vector or string

This property is read-only.

Decision expression for this selector, returned as a character vector.

FileName — C or C++ file for selector
character vector or string

This property is read-only.

C or C++ file for selector, returned as a character vector or string.

3 Class Reference

3-30

FunctionName — C or C++ function name for selector
character vector or string

This property is read-only.

C or C++ function name for this selector, returned as a character vector.

Id — Element identifier
Simulink ID (default) | property | handle

This property is read-only.

Identifier of the model element, returned as character vector of the Simulink ID, model
element property, or handle. This property is empty for the slcoverage.CodeSelector
class.

Type — Selector type
slcoverage.SFcnSelectorType value

Selector type, returned as one of these slcoverage.SFcnSelectorType values:

• SFcnName
• SFcnInstanceCppFileName
• SFcnInstanceCppFunction
• SFcnInstanceCppCondition
• SFcnInstanceCppDecision

Methods

allSelectors Selectors for model or code element

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects
(MATLAB).

 slcoverage.SFcnSelector class

3-31

Examples

Create and Run Filter for S-Function

Open and set up the model for S-function code coverage.
modelName = 'sldemo_lct_bus';
open_system(modelName);
set_param(modelName,'CovMetricSettings','dcme','RecordCoverage','on','CovSFcnEnable','on');

def = legacy_code('initialize');
def.SFunctionName = 'sldemo_sfun_counterbus';
def.OutputFcnSpec = 'void counterbusFcn(COUNTERBUS u1[1],int32 u2,COUNTERBUS y1[1],int32 y2[1])';
def.HeaderFiles = {'counterbus.h'};
def.SourceFiles = {'counterbus.c'};
def.IncPaths = {'sldemo_lct_src'};
def.SrcPaths = {'sldemo_lct_src'};
def.Options.supportCoverageAndDesignVerifier = true;

legacy_code('generate_for_sim',def);

Get the S-function selectors from the sldemo_sfun_counterbus block. Examine the
constructor code property value for all the selectors.
sel = slcoverage.SFcnSelector.allSelectors('sldemo_lct_bus/TestCounter/sldemo_sfun_counterbus');
sel.ConstructorCode

ans =

 'slcoverage.SFcnSelector(slcoverage.SFcnSelectorType.SFcnName,'sldemo_sfun_counterbus')'

ans =

 'slcoverage.SFcnSelector(slcoverage.SFcnSelectorType.SFcnInstanceCppFileName,'sldemo_lct_bus:15',
'counterbus.c')'

ans =

 'slcoverage.SFcnSelector(slcoverage.SFcnSelectorType.SFcnInstanceCppFunction,'sldemo_lct_bus:15',
'counterbus.c','counterbusFcn')'

ans =

 'slcoverage.SFcnSelector(slcoverage.SFcnSelectorType.SFcnInstanceCppDecision,'sldemo_lct_bus:15',
'counterbus.c','counterbusFcn','(u1->limits.upper_saturation_limit >= limit) && inputGElower', 1)'

ans =

 'slcoverage.SFcnSelector(slcoverage.SFcnSelectorType.SFcnInstanceCppDecision,'sldemo_lct_bus:15',
'counterbus.c','counterbusFcn','inputGElower',2)'

ans =

3 Class Reference

3-32

 'slcoverage.SFcnSelector(slcoverage.SFcnSelectorType.SFcnInstanceCppCondition,'sldemo_lct_bus:15',
'counterbus.c','counterbusFcn','limit >= u1->limits.lower_saturation_limit',1)'

Create a filter object. Create a rule based on one of selectors by indexing into the selector
object.
filt = slcoverage.Filter;
rule = slcoverage.FilterRule(sel(6),'OK to exclude',slcoverage.FilterMode.Exclude);
filt.addRule(rule);

Save the filter as sffilter. Simulate the model for code coverage. Add the filter file as
the value to the filter property of the resulting cvdata object. Then generate the
coverage report.

filt.save('sffilter');
csim = cvsim(modelName);
csim.filter = 'sffilter';
cvhtml('cov',csim);

Review the report. Click the sldemo_sfun_counterbus link and find the filter rule that
you added under Objects Filtered from Coverage Analysis.

 slcoverage.SFcnSelector class

3-33

See Also
cv.cvdatagroup | getSimulinkBlockHandle | slcoverage.BlockSelector |
slcoverage.Filter | slcoverage.FilterRule | slcoverage.MetricSelector

Topics
“Top-Level Model Coverage Report”
“Get a Simulink Identifier” (Simulink)
“Create, Edit, and View Coverage Filter Rules”

Introduced in R2017b

3 Class Reference

3-34

addRule
Class: slcoverage.Filter
Package: slcoverage

Add coverage filtering rule to filter

Syntax
result = addRule(filter,rule)

Description
result = addRule(filter,rule) adds the filter rule to the specified filter.

Input Arguments
filter — Filter object to add the rule to
slcoverage.Filter object

Filter object to add the rule to, specified as an slcoverage.Filter object.

rule — Rule to add to the filter
slcoverage.FilterRule object

Rule to add to the filter, specified as an slcoverage.FilterRule object.

Output Arguments
result — Rule addition result
logical

Rule addition result, returned as 0 or 1.

 addRule

3-35

Examples

Add Rule to Filter Object

Create a block selector, a filter, and a rule for the selector. Then add the rule to the filter.

Open the model. Specify coverage settings and turn on coverage recording.

modelName = 'sldemo_lct_bus';
open_system(modelName);
set_param(modelName,'CovMetricSettings','dcme','RecordCoverage','on');

Create a BlockSelector object, bl. This block selector selects all blocks in the model
with the property 'RelationalOperator'.
bl = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockType,'RelationalOperator');

Create a filter object, create a rule object, and add the rule to the filter object.
filt = slcoverage.Filter;
rule = slcoverage.FilterRule(bl,'Tested elsewhere',slcoverage.FilterMode.Exclude);
filt.addRule(rule);

See Also
removeRule | slcoverage.BlockSelector | slcoverage.Filter |
slcoverage.FilterRule | slcoverage.MetricSelector |
slcoverage.SFcnSelector

Introduced in R2017b

3 Class Reference

3-36

removeRule
Class: slcoverage.Filter
Package: slcoverage

Remove rule from filter rule set

Syntax
result = removeRule(filter,rule)

Description
result = removeRule(filter,rule) removes the filter rule from the specified filter.

Input Arguments
filter — Filter object to remove rule from
slcoverage.Filter object

Filter object to remove the rule from, specified as an slcoverage.Filter object.

rule — Rule to remove from the filter
slcoverage.FilterRule object

Rule to remove from the filter, specified as an slcoverage.FilterRule object.

Output Arguments
result — Rule removal result
logical

Rule removal result, returned as 0 or 1.

 removeRule

3-37

Examples

Remove Rules from Filter Objects

Create a block selector, a filter, and a rule for the selector. Add rules to the filter. Then,
remove a rule from a filter.

Open the model. Specify coverage settings and turn on coverage recording.

modelName = 'sldemo_lct_bus';
open_system(modelName);
set_param(modelName,'CovMetricSettings','dcme','RecordCoverage','on');

Create two BlockSelector objects, bl and bl1.
bl = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockType,'RelationalOperator');
id = Simulink.ID.getSID('sldemo_lct_bus/slCounter/And');
bl1 = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockInstance,id);

Create a filter object, create two rule objects, and add each rule to the filter object.
filt = slcoverage.Filter;
rule = slcoverage.FilterRule(bl,'Tested elsewhere',slcoverage.FilterMode.Exclude);
rule1 = slcoverage.FilterRule(bl1,'Value is never greater than 0');
filt.addRule(rule);
filt.addRule(rule1);

Review the rules. Look the first rule in the array.

fi = filt.rules
fi(1)

fi =

 1×2 FilterRule array with properties:

 Selector
 Mode
 Rationale

ans =

 FilterRule with properties:

 Selector: [1×1 slcoverage.BlockSelector]

3 Class Reference

3-38

 Mode: Exclude
 Rationale: 'Tested elsewhere'

Remove the first rule that you added. Then review the rules to see that the first rule that
you added is removed.

filt.removeRule(rule);
fi = filt.rules

fi =

 FilterRule with properties:

 Selector: [1×1 slcoverage.BlockSelector]
 Mode: Justify
 Rationale: 'Value is never greater than 0'

See Also
addRule | slcoverage.Filter | slcoverage.FilterRule |
slcoverage.filter.rules

Introduced in R2017b

 removeRule

3-39

rules
Class: slcoverage.Filter
Package: slcoverage

Rules for filter

Syntax
fr = rules(filter)
fr = rules(filter,element)

Description
fr = rules(filter) returns all the rules assigned to the filter.

fr = rules(filter,element) returns only the rules for the specified model element.

Input Arguments
filter — Filter object whose rules to return
slcoverage.Filter object

Filter object whose rules to return, specified as an slcoverage.Filter object.

element — Element identifier
Simulink ID | property | handle

This property is read-only.

Identifier of the model element whose rules to return, specified as a character vector or
string of the Simulink ID, model element property, or handle.

3 Class Reference

3-40

Output Arguments
fr — Filter rules
slcoverage.FilterRule object | array of slcoverage.FilterRule objects

Filter rules, returned as an slcoverage.FilterRule object or an array of
slcoverage.FilterRule objects.

Examples

Get All Rules for Filter Object

Open a model. Specify coverage settings and turn on coverage recording.

modelName = 'sldemo_lct_bus';
open_system(modelName);
set_param(modelName,'CovMetricSettings','dcme','RecordCoverage','on');

Create a BlockSelector object, bl. Create a filter object, create a rule, and add the
rule to the filter.
bl = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockType,'RelationalOperator');
filt = slcoverage.Filter;
rule = slcoverage.FilterRule(bl,'Tested elsewhere',slcoverage.FilterMode.Exclude);
filt.addRule(rule);

Create another rule and add it to the filter object.
id = Simulink.ID.getSID('sldemo_lct_bus/slCounter/And');
bl = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockInstance,id);
rule = slcoverage.FilterRule(bl,'Value is never greater than 0');
filt.addRule(rule);

Use rules to return the filter rules. View first rule in the array.

fi = filt.rules
fi(1)

fi =

 1×2 FilterRule array with properties:

 Selector
 Mode

 rules

3-41

 Rationale

ans =

 FilterRule with properties:

 Selector: [1×1 slcoverage.BlockSelector]
 Mode: Exclude
 Rationale: 'Tested elsewhere'

Use rules to return the rule only for the And block.

filt.rules(id)

ans =

 FilterRule with properties:

 Selector: [1×1 slcoverage.BlockSelector]
 Mode: Justify
 Rationale: 'Value is never greater than 0'

See Also
addRule | removeRule | slcoverage.Filter | slcoverage.FilterRule

Introduced in R2017b

3 Class Reference

3-42

allSelectors
Class: slcoverage.BlockSelector, slcoverage.CodeSelector, slcoverage.Selector,
slcoverage.MetricSelector, slcoverage.SFcnSelector
Package: slcoverage

Selectors for model or code element

Syntax
sel = slcoverage.Selector.allSelectors(element)
sel = slcoverage.BlockSelector.allSelectors(element)
sel = slcoverage.CodeSelector.allSelectors(element)
sel = slcoverage.CodeSelector.allSelectors(element,Name,Value)
sel = slcoverage.MetricSelector.allSelectors(element)
sel = slcoverage.SFcnSelector.allSelectors(element)
sel = slcoverage.Selector.allSelectors(element,Name,Value)

Description
sel = slcoverage.Selector.allSelectors(element) returns all the selectors for
the model element.

sel = slcoverage.BlockSelector.allSelectors(element) returns all the block
selectors for element.

sel = slcoverage.CodeSelector.allSelectors(element) returns all the custom
C/C++ code selectors for element.

sel = slcoverage.CodeSelector.allSelectors(element,Name,Value) , where
element is a model and Name,Value specifies the simulation mode, returns all the
custom C/C++ code selectors for the model in the specified simulation mode.

sel = slcoverage.MetricSelector.allSelectors(element) returns all the
metric selectors for element.

 allSelectors

3-43

sel = slcoverage.SFcnSelector.allSelectors(element) returns all the S-
function selectors for element.

sel = slcoverage.Selector.allSelectors(element,Name,Value) returns
selectors for element, with additional options specified by one or more Name,Value pair
arguments.

Input Arguments
element — Model element to select
handle | Simulink ID

Model element to select, specified as a handle or the model element Simulink identifier.
Example: 'sldemo_lct_bus:18'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
'Type',slcoverage.BlockSelectorType.BlockInstance,'Description','F
outcome'

Type — Selector type refinement
slcoverage.BlockSelectorType value | slcoverage.CodeSelectorType value |
slcoverage.MetricSelectorType value | slcoverage.SFcnSelectorType value

Selector type refinement specified as one of the
slcoverage.BlockSelectorTypeslcoverage.CodeSelectorType,
slcoverage.MetricSelectorType, or slcoverage.SFcnSelectorType values.
Possible values:

• Block selector types:

• slcoverage.BlockSelectorType.BlockInstance — An instance of a block.
• slcoverage.BlockSelectorType.BlockType — All blocks of the specified

block type.

3 Class Reference

3-44

• slcoverage.BlockSelectorType.Chart — A Stateflow chart.
• slcoverage.BlockSelectorType.MaskType — Blocks that use the specified

mask type.
• slcoverage.BlockSelectorType.State — A Stateflow state.
• slcoverage.BlockSelectorType.StateAllContent — Stateflow state and its

contents.
• slcoverage.BlockSelectorType.StateflowFunction — A Stateflow

function.
• slcoverage.BlockSelectorType.Subsystem — A subsystem block.
• slcoverage.BlockSelectorType.SubsystemAllContent — A subsystem and

its contents.
• slcoverage.BlockSelectorType.TemporalEvent — A Stateflow temporal

event.
• slcoverage.BlockSelectorType.Transition — A Stateflow transition.

• Code selector types:

• slcoverage.CodeSelectorType.File — Custom C/C++ code file name.
• slcoverage.CodeSelectorType.Function — Custom C/C++ code function

name.
• slcoverage.CodeSelectorType.Decision — A custom C/C++ code decision.
• slcoverage.CodeSelectorType.Condition — A custom C/C++ code

condition.

• Metric selector types:

• slcoverage.MetricSelectorType.ConditionOutcome selects outcome
metrics related to block inputs.

• slcoverage.MetricSelectorType.DecisionOutcome selects outcome
metrics related to block outputs.

• slcoverage.MetricSelectorType.RelationalBoundaryOutcome selects
outcome metrics related to relational boundary outcomes.

• slcoverage.MetricSelectorType.SaturationOverflowOutcome selects
outcome metrics related to saturation on integer overflow outcomes.

• S-function selector types:

 allSelectors

3-45

• slcoverage.SFcnSelectorType.SFcnName selects the specified S-function.
• slcoverage.SFcnSelectorType.SFcnInstanceCppFileName selects the

coverage data in the generated code file for this block.
• slcoverage.SFcnSelectorType.SFcnInstanceCppFunction selects a

function.
• slcoverage.SFcnSelectorType.SFcnInstanceCppCondition selects a

condition outcome of the S-function block.
• slcoverage.SFcnSelectorType.SFcnInstanceCppDecision selects a

decision outcome of the S-function block.

Description — Description text to match
character vector or string

Description text to match for the selector that you want to return, specified as a character
vector or string. For example, if you want to return only the selectors that include the text
F outcome in the description, use this syntax:

s = slcoverage.Selector.allSelectors(id,'Description','F outcome')

SimulationMode — Simulation mode
character vector or string

Simulation mode to run when selecting code filters, entered as one of the following:

Object Specification Description
'normal' (default) Extract code selectors for custom code in normal

simulation, such as custom code called from a C
Caller block or a Stateflow chart.

'sil' Extract code selectors for code generated in
Simulation-in-the-Loop (SIL) mode and code
selectors for the top model code interface

'pil' Extract code selectors for code generated in
Processor-in-the-Loop (PIL) mode and code
selectors for the top model code interface

3 Class Reference

3-46

Object Specification Description
'xil' If SIL-mode code exists, extract code selectors

for code generated in SIL mode and extract code
selectors for the top model code interface;
otherwise, extract code selectors for code
generated in PIL mode and extract code selectors
for the top model code interface

'modelrefsil' Extract code selectors for the model reference
code interface in SIL mode

'modelrefpil' Extract code selectors for the model reference
code interface in PIL mode

'modelrefxil' If SIL-mode code exists, extract code selectors
for the model reference code interface in SIL
mode, if the model is in SIL mode;
otherwise,extract code selectors for the model
reference code interface in PIL mode

Output Arguments
sel — Selectors for the model or code element
array of Selector objects

Selectors for the model or code element, returned as an array of Selector objects.

Examples

Get All Selectors

Get all the selectors for the block. Then you can add a rule to exclude or justify a selector.
(You can only justify metric selectors.)

Open the model and turn on coverage recording. Get all the selectors for the And block.

modelName = 'sldemo_lct_bus';
open_system(modelName);
set_param(modelName,'CovMetricSettings','dcme','RecordCoverage','on');

 allSelectors

3-47

id = Simulink.ID.getSID('sldemo_lct_bus/slCounter/And');
sel = slcoverage.Selector.allSelectors(id)

s =

 1×6 heterogeneous Selector (BlockSelector, MetricSelector) array with properties:

 Description
 Type
 Id
 ConstructorCode

The block has six selectors. You can index into each one to see the content. The sixth
selector is the metric selector that you want to justify.

sel(6)

ans =

 MetricSelector with properties:

 ObjectiveIndex: 2
 OutcomeIndex: 2
 Description: 'F outcome of input port 2 in Logic block "And"'
 Type: ConditionOutcome
 Id: 'sldemo_lct_bus:23'
 ConstructorCode: 'slcoverage.MetricSelector(slcoverage.MetricSelectorType.ConditionOutcome,'sldemo_lct_bus:23',2,2)'

Create a justify rule for the selector. Create a filter object and add the rule to it.

rule = slcoverage.FilterRule(sel(6),'Expected result');
filt = slcoverage.Filter;
filt.addRule(rule);

Save and run the filter.

filt.save('metrfilter');
csim = cvsim(modelName);
csim.filter = 'metrfilter';
cvhtml('cov',csim);

Get Selector by Type and Description

Get a particular metric selector.

Open the model and turn on code coverage.

3 Class Reference

3-48

modelName = 'sldemo_lct_bus';
open_system(modelName);
set_param(modelName,'CovMetricSettings','dcme','RecordCoverage','on');

Get the condition selectors for the And block whose description includes the text F
outcome.
id = Simulink.ID.getSID('sldemo_lct_bus/slCounter/And');
s = slcoverage.Selector.allSelectors(id,...
 'Type',slcoverage.MetricSelectorType.ConditionOutcome,'Description','F outcome')

s =

 1×2 MetricSelector array with properties:

 ObjectiveIndex
 OutcomeIndex
 Description
 Type
 Id
 ConstructorCode

Look at the constructor code for the two selectors that were returned.

s.ConstructorCode

ans =

 'slcoverage.MetricSelector(slcoverage.MetricSelectorType.ConditionOutcome,'sldemo_lct_bus:23',1,2)'

ans =

 'slcoverage.MetricSelector(slcoverage.MetricSelectorType.ConditionOutcome,'sldemo_lct_bus:23',2,2)'

See Also
slcoverage.BlockSelector | slcoverage.CodeSelector |
slcoverage.MetricSelector | slcoverage.SFcnSelector |
slcoverage.Selector

Introduced in R2017b

 allSelectors

3-49

